首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants obtained from anther culture of the African violet, Saintpaulia ionantha Wendl. `Shag' and vegetatively cloned copies of the parent anther donor plant were examined for their ploidy and ribulose-1,5-biphosphate carboxylase (RuBPcase) activity. The cloned parent plants were all diploid and did not vary much in their nuclear DNA, chlorophyll, and RuBPcase activity. Some of the anther-derived plants were similar to the parent plants while others were not. Different levels of ploidy were observed among the androgenetic plants. RuBPcase activities higher than that of the parent plants were found in some anther-derived plants. However, there was no direct correlation between ploidy and RuBPcase activity. Expression of nuclear genes from a single parent in the anther-derived plants and it's diploidization or plastid changes during early stages of microsporogenesis or androgenesis are suggested as possible reasons for the variations observed among them. This could be a useful technique to obtain physiological variants which could be agronomically desirable.  相似文献   

2.
Ribulose bisphosphate carboxylase activity and chlorophyll content were measured in the leaves and reproductive parts of two wheat cultivars after ear emergence. The chlorophyll content of the flag leaf was mostly higher than that of the awns and glumes. Awns had the highest chlorophyll content among reproductive parts. Light transmission to the lower leaves was higher in the dwarf cultivar Moti than in the medium tall cultivar Kalyansona. RuBP carboxylase activity in Kalyansona leaves was higher than in Moti leaves. In postanthesis stages there was no difference in RuBP carboxylase activity in the flag leaf and lower leaves between cultivars. Awns had the maximum activity of RuBP carboxylase followed by glumes and grains among ear parts. The relative capacity for photosynthesis in the ear parts was several times higher than in the flag leaf on a unit chlorophyll basis. It is suggested that in a crop canopy in the field, the spike(ear) may have a greater importance in grain development than has been previously estimated.  相似文献   

3.
Regeneration of plants by caulogenesis of anther derived callus of Streptocarpus X hybridus Concorde was obtained on MS basal medium with 2.0 mg/l NAA and 0.5 mg/l BAP. All regenerated plants were diploid and of somatic cell origin as determined by chromosome counts, flower color and morphological similarity to the anther donor plant, and flower color segregation among progeny of anther-derived plants. Variation expressed as deformed and dwarfed transient morphology was observed in 2 anther-derived plants. Variation was also observed among progenies of 5 anther-derived plants from the same anther donor plant for days to flowering, flowers per peduncle, peduncle length, and leaf area. Additional morphological variation including transient leaf variegation among seedlings and twisted or inverted leaves on mature plants was also observed among progeny of anther-derived plants.  相似文献   

4.
The rate of photosynthesis under high light (1000 micromole quanta per square meter per second) and at 25°C was measured during development of the third leaf on wheat plants and compared with the activity of several photosynthetic enzymes and the level of metabolites. The rate of photosynthesis reached a maximum the 7th day after leaf emergence and declined thereafter. There was a high and significant correlation between the rate of photosynthesis per leaf area and the activities of the enzymes ribulose 5-phosphate kinase (r = 0.91), ribulose 1,5-bisphosphate (RuBP) carboxylase (r = 0.94), 3-phosphoglycerate (PGA) kinase (r = 0.82), and fructose 1,6-bisphosphatase (r = 0.80) per leaf area. There was not a significant correlation of photosynthesis rate with chlorophyll content. The rate of photosynthesis was strongly correlated with the level of PGA (r = 0.85) and inversely correlated with the level of triose phosphate (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate) (r = 0.92). RuBP levels did not change much during leaf development; therefore photosynthesis rate was not correlated with the level of RuBP. The rate of photosynthesis was at a maximum when the ratio of PGA/triose phosphate was high, and when the ratio of RuBP/PGA was low. Although several enzymes change in parallel with leaf development, the metabolite changes suggest the greatest degree of control may be through RuBP carboxylase. The sucrose content of the leaf was highest under high rates of photosynthesis. There was no evidence that later in leaf development, photosynthesis (measured under high light and at 25°C) was limited by utilization of photosynthate.  相似文献   

5.
Mepiquat chloride (N, N-dimethylpiperidinium chloride), well known as PIX, is a potential systemic plant growth regulator. The effects of PIX on plant height, stem elongation, leaf area, net photosynthetic rates, chlorophyll content, sucrose and starch levels, and RuBP carboxylase activity in cotton (Gossypium hirsutum L. cv. DES 119) plants were measured. PIX was sprayed (0, 7.65, 15.3, 30.6 or 61.2 g active ingredient ha–1) on the plants at first square (25 days after emergence) and measurements were made at frequent intervals. Plant height was clearly reduced by PIX. The total length of vegetative branches and fruiting branches was 40% and 50% less than the control. Total leaf area in PIX treated plants was 16% less than the control. Net photosynthetic rates were 25% less in PIX-treated leaves. PIX treated leaves had more chlorophyll content. The activity of RuBP carboxylase was decreased in PIX treated plants. Starch accumulation was noticed in PIX treated leaves while sucrose content was not changed. The data reported here suggest that reduced growth responses induced by PIX results in partial loss of photosynthetic capacity in cotton at least up to 20 days after application of the growth regulator.  相似文献   

6.
Net photosynthesis on a leaf area and leaf weight basis increased significantly with ploidy in a 4X, 6X, 8X and 10X allopolyploid series of tail fescue (Festuca arundinacea Schreb.). Total protein did not increase significantly with ploidy. Rocket immunoelectrophoresis was used to quantitate ribulose-1, 5-bisphosphate carboxylase (RuBPCase) protein. RuBPCase content, expressed on both a concentration basis and as a percentage of total protein increased significantly with ploidy in both field and greenhouse experiments. The range of RuBPCase content was 16 to 73% of total protein and 2.8 and 6.5 mg/ml of extract. Specific activity of RuBPCase did not increase significantly with ploidy. Chlorophyll concentration increased as a quadratic function of ploidy, with the mean for 8X genotypes representing maximal chlorophyll content. Evidence is presented that increasing concentrations of RuBPCase are associated with higher net photosynthesis rates in tall fescue. This suggests that RuBPCase may represent a marker for increased net photosynthesis. RuBPCase was extracted in a partially active state or inhibited state and must be fully activated by Mg2+ and HCO3 to measure maximal activities. Polyploidization appeared to increase selectively the allocation of total protein for synthesis of RuBPCase; however, there was also a range for carboxylase content among the genotypes within a given ploidy level.  相似文献   

7.
水稻生育过程中,RuBP羧化酶活性与光合速率、RuBP加氧酶活性与光呼吸速率、RuBP羧化酶活性与加氢酶活性以及光合速率与光呼吸速率之间是相关的。籼型品种与粳型品种间酶活性的高低及光合、光呼吸速率的高低基本一致,籼型三系杂交稻(F1)无明显的光合优势。酶的羧化活性的高低只在一定范围内与光合速率的高低平行。在正常生育条件下,酶蛋白的数量不是水稻光合速率的限制因子。  相似文献   

8.
Over 250 dihaploid lines derived from a disomic tetraploid genotype of Solanum acaule ssp. acaule Bitt. (acc. PI 472655) were produced via androgenesis. The anther donor plant had previously shown immunity to bacterial ring rot caused by Clavibacter michiganensis ssp. sepedonicus (Spieck. and Kotth.) Davis et al., and has now been shown to have high embryogenic capacity in anther culture. In total, 370 shoots were regenerated from 4,011 anthers cultured. The ploidy level of the 287 regenerants was determined from greenhouse-grown plants using flow cytometry. Of these plants, 274 (95%) were dihaploids with an average DNA content of 1.68 pg, approximately half that of the tetraploid anther donor (2.95 pg). The remainder of the anther-derived regenerants (5%) were tetraploid, hexaploid or mixoploid. Chromosome counts confirmed the results obtained by flow cytometry. In the greenhouse, none of the 33 dihaploid lines analysed produced berries but showed low (2%) male fertility. This contrasted with five greenhouse-grown tetraploid anther-derived plants which produced berries and seeds. Comparison of the general leaf morphology and floral characteristics of the tetraploid anther donor, S. acaule, and the dihaploids indicated that little variation exists in this species. Received: 28 August 1997 / Revision received: 22 December 1997 / Accepted: 27 July 1998  相似文献   

9.
Besford, R. T., Withers, A. C. and Ludwig, L. J. 1985. Ribulosebisphosphate carboxylase activity and photosynthesis duringleaf development in the tomato.—J. exp Bot. 36: 1530–1541. The carboxylase activity of ribulose-1,5-bisphosphate carboxylase/oxygenaseand of phosphoenolpyruvate carboxylase, and the light saturatedrate of net photosynthesis were measured in the developing 5thleaf of tomato plants. Values for light saturated net photosynthesiswere also calculated from the measured carboxylase activitiesand estimates of internal CO2 and oxygen concentrations. Thecalculated rate using the activity of ribulose bisphosphatecarboxylase alone for net CO2 assimilation in 300 mm3 dm–3CO2 was greater than the measured rate at 80% and full expansionbut less than the measured rate in younger leaves. When theactivities of both the carboxylases were taken into accountbetter agreement was evident for young leaves but the rate wasfurther overestimated for older leaves The calculated rate forphotosynthesis in 1200 mm3 dm–3 CO2, assuming saturationof ribulose bisphosphate carboxylase with RuBP, was an overestimatefor young leaves but was close to the observed values for leavesnear full expansion. The results are discussed in terms of measuredconductances for CO2 and the availability of RuBP in the leaf Key words: Tomato, leaf development, photosynthesis, RuBP carboxylase, oxygenase  相似文献   

10.
Effects of colchicine on androgenesis of diploid potato (Solanum phureja Juz. & Buk.) and ploidy of anther-derived plants were examined in three experiments. In the first, no significant difference was found for mean embryos per anther of an interspecific potato clone after application of five colchicine treatments (0, 25, 50, 100 and 200 mg l-1) for 24 h to freshly excised anthers containing late uninucleate microspores. The same colchicine treatments were applied to six hybrid potato families in the second experiment. Families differed for number of embryos per anther and embryo regeneration frequency; however, androgenic response did not differ significantly among colchicine treatments. The 312 regenerated plants included 233 (75%) monoploids. The third experiment examined durations (0, 90 s vacuum infiltration, 24, 48 and 72 h) of high colchicine treatment (200 mg l-1) on anther culture of seedlings representing one family. Mean embryos per anther, though not statistically significant, ranged from 0.96 to 1.90 for 48 h colchicine and 90 s vacuum infiltration, respectively. There were 126 plants regenerated of which 62% were monoploid. Frequency of monoploid plants regenerated from colchicine treatments did not differ significantly. RAPD analysis was conducted on 26 anther-derived monoploids of one family, based on common flasks of origin. The 13 decamer primers revealed 54 polymorphic loci. These were used to characterize the monoploids genetically. From one flask, two pairs of monoploids among six examined were genetically indistinguishable. Examination of a second and third flask revealed, six of seven and three of seven monoploids that were genetically indistinguishable. These data suggest the regeneration of genetic clones within flasks and may indicate the occurrence of secondary embryogenesis during anther culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
We studied the relationship between genome size and ploidy level variation and plant traits for the reed grass Phragmites australis. Using a common garden approach on a global collection of populations in Aarhus, Denmark, we investigated the influence of monoploid genome size and ploidy level on the expression of P. australis growth, nutrition and herbivore-defense traits and whether monoploid genome size and ploidy level play different roles in plant trait expression. We found that both monoploid genome size and latitude of origin contributed to variation in traits that we studied for P. australis, with latitude of origin being generally a better predictor of trait values and that ploidy level and its interaction with monoploid genome size and latitude of origin also contributed to trait variation. We also found that for four traits, tetraploids and octoploids had different relationships with the monoploid genome size. While for tetraploids stem height and leaf water content showed a positive relationship with monoploid genome size, octoploids had a negative relationship with monoploid genome size for stem height and no relationship for leaf water content. As genome size within octoploids increased, the number of aphids colonizing leaves decreased, whereas for tetraploids there was a quadratic, though non-significant, relationship. Generally we found that tetraploids were taller, chemically better defended, had a greater number of stems, higher leaf water content, and supported more aphids than octoploids. Our results suggest trade-offs among plant traits mediated by genome size and ploidy with respect to fitness and defense. We also found that the latitude of plant origin is a significant determinant of trait expression suggesting local adaptation. Global climate change may favor some genome size and ploidy variants that can tolerate stressful environments due to greater phenotypic plasticity and to fitness traits that vary with cytotype which may lead to changes in population genome sizes and/or ploidy structure, particularly at species’ range limits.  相似文献   

12.
棉花缺钾引起的形态和生理异常   总被引:22,自引:4,他引:18  
随着棉花新品种特别是转Bt(Bacillus thuringiensis)基因抗虫棉应用于生产和单位面积产量不断提高,棉花缺钾现象在许多植棉国家已越来越普遍和严重。棉花缺钾症状通常首先表现在棉株中下部的老叶上,但近年来也发现症状首先表现在中上部嫩叶上的状况。缺钾导致棉花生育异常,突出表现为叶面积系数,光合速率和于物质生产降低,但比叶重提高、棉花早熟。土壤供钾不足,钾吸收受抑,高产转基因棉花品种的应用以及不良环境因子的胁迫等是导致缺钾的重要原因。缺钾时单叶光合速率的下降主要是叶片气孔导度降低、叶绿素含量减少、叶绿体超微结构受损、光合产物运转不畅、RuBP羧化酶活性降低等所致。群体光合能力的下降则源于单叶光合速率降低和叶面积系数下降。棉株上部功能叶的叶片和叶柄中的K^ 含量可作为缺钾的诊断指标。  相似文献   

13.
Makino A  Mae T  Ohira K 《Plant physiology》1983,73(4):1002-1007
Changes in photosynthesis and the ribulose 1,5-bisphosphate (RuBP) carboxylase level were examined in the 12th leaf blades of rice (Oryza sativa L.) grown under different N levels. Photosynthesis was determined using an open infrared gas analysis system. The level of RuBP carboxylase was measured by rocket immunoelectrophoresis. These changes were followed with respect to changes in the activities of RuBP carboxylase, ribulose 5-phosphate kinase, NADP-glyceraldehyde 3-phosphate dehydrogenase, and 3-phosphoglyceric acid kinase.

RuBP carboxylase activity was highly correlated with the net rate of photosynthesis (r = 0.968). Although high correlations between the activities of other enzymes and photosynthesis were also found, the activity per leaf of RuBP carboxylase was much lower than those of other enzymes throughout the leaf life. The specific activity of RuBP carboxylase on a milligram of the enzyme protein basis remained fairly constant (1.16 ± 0.07 micromoles of CO2 per minute per milligram at 25°C) throughout the experimental period.

Kinetic parameters related to CO2 fixation were examined using the purified carboxylase. The Km(CO2) and Vmax values were 12 micromolar and 1.45 micromoles of CO2 per minute per milligram, respectively (pH 8.2 and 25°C). The in vitro specific activity calculated at the atomospheric CO2 level from the parameters was comparable to the in situ true photosynthetic rate per milligram of the carboxylase throughout the leaf life.

The results indicated that the level of RuBP carboxylase protein can be a limiting factor in photosynthesis throughout the life span of the leaf.

  相似文献   

14.
Summary Photosynthetic recovery (PR) in a southwest Texas, USA population of Selaginella lepidophylla (Hook and Grev.) (Selaginellaceae), a poikilohydric spikemoss, was examined in the laboratory. Infrared CO2 gas analysis and ribulose 1,5-bisphosphate (RuBP) carboxylase activity measurements indicated that optimal temperature for PR was near 25°C in terms of: (1) rapidity of net CO2 uptake after hydration (5.4 h), (2) maximum net photosynthetic rate at 2000 E·m-2·s-1 (2.44 mg CO2·g(DWT)-1·h-1), and (3) maximum net CO2 assimilation per 30 h hydration event (43.8 mg CO2·g(DWT)-1·30 h-1). The PR was much slower at both 15° and 35° C, with lower photosynthetic rates and net carbon gains per hydration event. High respiratory costs were incurred at 45°C and no net photosynthesis was observed. Increases in RuBP carboxylase activity and chlorophyll content during 24 h hydration were also greatest near 25°C. Dry plants had 60% of the enzyme activity of fully recovered (24 h hydration) plants, indicating enzyme conservation. Actinomycin D and cycloheximide did not appear to inhibit PR, but chloramphenicol appeared to totally inhibit RuBP carboxylase activity increases over levels conserved in dry plants. Therefore, rapid PR in S. lepidophylla was achieved by both rapid increase in RuBP carboxylase activity, possibly via de novo synthesis, and conservation of the photosynthetic enzyme. Both mechanisms are essential to maximize assimilation in S. lepidophylla in an environment where hydrated periods are rare and of short duration.  相似文献   

15.
Changes in the activity and amount of ribulose 1,5-bisphosphate(RuBP)carboxylase (E.C. 4.1.1.39 [EC] ) were studied in well-watered plantsof Salix ‘aquatica gigantea’ and in similar plantsduring three different water stress treatments and after rewatering.The chloroplast ultrastructure of these plants was examinedby electron microscopy. The amounts of crystallized proteinin the chloroplast stroma were assessed according to the areaof crystal structure seen in the thin sections. RuBP carboxylase activity decreased with decreasing leaf waterpotentials but recovered upon rewatering, except when leaveshad been exposed to severe water stress. The percentage of totalchloroplast area made up of crystal inclusions decreased withdecreasing leaf water potentials. After rewatering, the crystalseither disappeared or the amount decreased markedly. Both RuBPcarboxylase activity and the area of crystal inclusions increasedinitially with increased extractable RuBP carboxylase proteinbut decreased with further increases above 6700–7000 µgRuBP carboxylase protein mg–1 chlorophyll. In well-wateredand water-stressed plants the activity of RuBP carboxylase,based on amount of chlorophyll, increased with an increasingamount of crystal inclusions in the chloroplast stroma. In rewateredplants no such correlation was observed, and the low percentageof crystal inclusions in the chloroplast area was independentof RuBP carboxylase activity. Key words: Chloroplast stroma crystals, ribulose 1,5-bisphosphate carboxylase, Salix, water stress  相似文献   

16.
Rates of net photosynthesis and translocation, CO2 diffusive resistances, levels of carbohydrates, total protein, chlorophyll, and inorganic phosphate, and ribulose 1,5-diphosphate carboxylase activity were measured in soybean (Glycine max L. Merrill) leaves to ascertain the effect of altered assimilate demand. To increase assimilate demand, the pods, stems, and all but one leaf (the “source leaf”) of potted plants were completely shaded for 6 or 8 days and the responses of the illuminated source leaf were monitored. Rate of net photosynthesis in the source leaf of the shaded plants was found to increase curvilinearly to a maximum on the 8th day. The source leaf of the control plants (no sink shading) maintained a constant photosynthetic rate during this period. Vapor-phase resistance to CO2 diffusion did not vary with treatment, but mesophyll (liquid phase) resistance was significantly lower in the source leaf of the shaded plants.  相似文献   

17.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

18.
Barley ( Hordeum vulgare L. cv. Salome) primary leaf segments responded to the application of a putative plant growth regulator, ± jasmonic acid methylester (JA-Me). with accelerated senescence, as indicated by the loss of chlorophyll and the rapid decrease in activity and immunoreactive protein content of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39). The senescence-promoting action of JA-Me differed in light and in darkness; e.g. the initial rates of chlorophyll and RuBP carboxylase breakdown were markedly higher in light than in darkness in the presence of 4.10−5 M JA-Me. Cytokinin (benzyladenine, 4.10−5 M ) stopped the loss of chlorophyll and RuBP carboxylase during senescence; however, the rapid drop induced by JA-Me in the early phase of leaf segment senescence could not be prevented by concomitant or previous addition of BA. On the other hand, BA added 24 h after JA-Me application resulted in a recovery of chlorophyll and RuBP carboxylase at the later stages, indicating a possible rapid inactivation of JA-Me in the tissues. The activities of a number of other chloroplastic and cytosolic enzymes were not significantly altered in JA-Me-treated leaf segments compared with controls floated on water. Time-dependent chlorophyll decrease in isolated chloroplasts did not change upon JA-Me addition to the isolated organelles. It is suggested that JA-Me acts on chloroplast senescence by promoting cytoplasic events which eventually bring about the degradation of chloroplast constituents.  相似文献   

19.
The feasibility of grouping anther-derived plants of Solarium phureja according to ploidy based on their morphological characteristics was studied. Canonical discriminant analysis identified four characteristics (anther length, number of chloroplasts per pair of guard cells, leaf width, corolla width at widest diam) of nine measured as the most effective combination for diagnosing ploidy. Data for these characteristics from two sets of plants were subjected to two clustering techniques, one using the average linkage clustering (UPGMA of the NT-SYS programs) and the other using centroid sorting (SAS-Fastclus). Screening of anther-derived plants by cluster analysis proved to be an efficient means of separating monoploids from the other ploidy levels.  相似文献   

20.
Photosynthetic properties were examined in several hcf (high chlorophyll fluorescence 11, 21, 42 and 45) nuclear recessive mutants of maize which were previously found to have normal photochemistry and low CO2 fixation. Mutants usually either died after depletion of seed reserves (about 18 days after planting), or survived with slow growth up to 7 or 8 weeks. Both the activity and quantity of ribulose 1,5-bisphosphate carboxylase (Rubisco) were low in the mutants (5-25% of the normal siblings on a leaf area basis) and the loss of Rubisco tended to parallel the reduction in photosynthetic capacity. The Rubisco content in the mutants was often marginal for photosynthetic carbon gain, with some leaves and positions along a leaf having no net photosynthesis, while other leaves had a low carbon gain. Conversely, the activities of C4 cycle enzymes, phosphoenolpyruvate carboxylase, pyruvate, Pi dikinase, NADP-malate dehydrogenase, and NADP-malic enzyme, were the same or only slightly reduced compared to the normal siblings. The mutants had about half as much chlorophyll content per leaf area as the normal green plants. However, the Rubisco activity in the mutants was low on both a leaf area and chlorophyll basis. Low Rubisco activity and lower chlorophyll content may both contribute to the low rates of photosynthesis in the mutants on a leaf area basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号