首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
包埋脱水法是植物材料超低温保存的新技术,从1990年至今,已有30多篇文献报道。本文介绍了包埋脱水法的研究历史、技术要点和主要优点。  相似文献   

2.
植物榈包埋脱水法超低温保存的研究进展   总被引:7,自引:0,他引:7  
包埋脱水法是植物材料超低温保存的的新技术,从1990年至今,已有30多篇文献报道。本语文介绍了包埋脱水法的研究历史、技术要点和主要优点。  相似文献   

3.
包埋玻璃化法超低温保存植物种质的研究进展   总被引:29,自引:0,他引:29  
包埋玻璃化法是在玻璃化法和包埋脱水法基础上发展起来的超低温保存植物种质的新技术.它具有能同时处理大量材料,处理后恢复生长快,对材料的毒害作用较小及成芽率高等优点,已成功地用于辣根、山嵛菜等20余种植物,在植物种质资源的保存上显示出了巨大的应用潜力.本文介绍了包埋玻璃化法产生的背景及其优点,阐述了包埋玻璃化法的基本方法和预培养、包埋、脱水、化冻及恢复培养等过程,比较了该法冻存后的效果和冻存后所形成植株的遗传稳定性,同时指出了进一步研究的重点.  相似文献   

4.
吴雪梅  汤浩茹 《植物学报》2005,22(2):238-245
包埋玻璃化法是在玻璃化法和包埋脱水法基础上发展起来的超低温保存植物种质的新技术。它具有能同时处理大量材料,处理后恢复生长快,对材料的毒害作用较小及成芽率高等优点,已成功地用于辣根、山嵛菜等20余种植物,在植物种质资源的保存上显示出了巨大的应用潜力。本文介绍了包埋玻璃化法产生的背景及其优点, 阐述了包埋玻璃化法的基本方法和预培养、包埋、脱水、化冻及恢复培养等过程,比较了该法冻存后的效果和冻存后所形成植株的遗传稳定性,同时指出了进一步研究的重点。  相似文献   

5.
包埋-玻璃化法冷冻保存湛江等鞭金藻的研究   总被引:1,自引:0,他引:1  
采用包埋-玻璃化法冷冻保存湛江等鞭金藻(Isochrysis zhanjiangensis),探讨了装载液成分和浓度、装载时间、脱水时间、洗涤液浓度及洗涤时间对超低温保存后存活率的影响。结果表明在20℃50%PVS(PVS:30%甘油(GLY) 20%乙二醇(EG) 10%二甲基亚砜(DMSO),用f/2培养基定容)装载4.5h,0℃100%PVS脱水50min,冻存24h后取出冻存管并迅速投入40℃恒温水浴中快速化冻约3min,1.0mol/L山梨醇洗涤40min条件下,湛江等鞭金藻的存活率最高,为54%。与常规的两步法和包埋脱水法相比,包埋-玻璃化法简单、快速且存活率高,在藻类种质保存中有广阔的应用前景。  相似文献   

6.
用包埋脱水法冷冻保存水稻胚性悬浮细胞。整个过程包括:胚性悬浮细胞预培养、细胞包埋、二次预培养、包埋细胞脱水、液氮冰冻,细胞解冻和冷冻细胞恢复培养。结果表明,在细胞水分含量为25.17%和蔗糖浓度依次递增以及第2次预培养34d的存活率最好。在培养基中加2.5g·L^-1活性炭有利于细胞的恢复生长。细胞恢复培养后,能再产生愈伤组织,但生长变慢,有约5d的滞后期。  相似文献   

7.
该研究通过对脱水时间和化冻温度的探索,检验了包埋玻璃化法在超低温保存湿润生境中苔藓的可能性。结果表明:卵叶泥炭藓无菌苗在4℃条件下预培养3d后,在0℃用60% PVS_2装载30min,PVS_2脱水60min后迅速投入液氮保存,24h后用40℃水浴快速化冻2min再培养,成活率可达42.41%,且再生植株与常温状态下的植株形态指标没有显著性差异。研究认为,包埋玻璃化法超低温保存湿润环境中生长的苔藓植物是可行的。  相似文献   

8.
采用包埋-玻璃化法对小新月菱形藻进行冰冻保存,探讨玻璃化溶液(PVS)配方、装载液浓度和装载时间、脱水时间以及洗涤方法对冰冻保存存活率的影响。结果表明:小新月菱形藻在0℃预冷后50%PVS2装载60min,100%PVS2脱水60min,1mol·L-1蔗糖梯度洗涤30min的条件下存活率最高,为74.1%。包埋-玻璃化法不需要特殊的冷冻设备,冰冻程序操作简单,在藻类种质的超低温保存中有较大的应用潜力。  相似文献   

9.
用包埋.脱水法在常温和低温下保存小新月菱形藻(Nitzschla closterium f.minutissima),探讨了温度、光(暗)、含水量,密封袋内空间体积和密封袋外膜材质等因素对保存效果的影响.结果表明,小新月菱形藻在4℃下暗保存6个月后的最高存活率达到80.4%.而且,保存后的藻细胞经过恢复培养后,其生长力可达到保存前的水平.包埋.脱水法操作简单.无需复杂设备,在藻类种质保存中有广阔的应用前景.  相似文献   

10.
包埋-脱水法常温和低温保存绿色巴夫藻   总被引:2,自引:0,他引:2  
用包埋-脱水法在常温和低温下保存绿色巴夫藻(Pavlova virdis),探讨了温度、光(暗)和含水量等因素对存活率的影响.结果表明,通过调节含水量、控制光(暗)条件以及使用甘油保护剂等措施,绿色巴夫藻在常温和低温下都可以保存6个月并保持较高的存活率.其中4℃(暗)保存的最高存活率高达77.6%,而且保存后的藻细胞经过适当的恢复培养后,其生长力可以达到保存前的水平.包埋-脱水法操作简单,无需贵重设备,在藻类种质保存中有广阔的应用前景.  相似文献   

11.
Survival of wampee (Clausena lansium Sksels) axes and maize (Zea mays L.) embryos decreased with rapid and slow dehydration. Damage of wampee axes by rapid dehydration was much less than by slow dehydration, and that was contrary to maize embryos. The malondialdehyde contents of wampee axes and maize embryos rapidly increased with dehydration, those of wampee axes were lower during rapid dehydration than during slow dehydration, and those of maize embryos were higher during rapid dehydration than during slow dehydration. Activities of superoxide dismutsse (SOD), ascorbate peroxidase (APX) and catalase (CAT) of wampee axes markedly increased during the sady phase of dehydration, and then rapidly decreased, and those of rapidly dehydrated axes were higher than those of slow dehydrated axes when they were dehydrated to low water contents. Activities of SOD and APX of maize embryos notable decreased with dehydration. There were higher SOD activities and lower APX activities of slowly dehydrated maize embryos compared with rapidly dehydrated maize embryos. CAT activities of maize embryos markedly increased during the eady phase of dehydration, and then decreased, and those of slowly dehydrated embryos were higher than those of rapidly dehydrated embryos during the late phase of dehydration.  相似文献   

12.
Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness.  相似文献   

13.
Dehydration Injury in Germinating Soybean (Glycine max L. Merr.) Seeds   总被引:5,自引:3,他引:2  
The sensitivity of soybean (Glycine max L. Merr. cv Maple Arrow) seeds to dehydration changed during germination. Seeds were tolerant of dehydration to 10% moisture if dried at 6 hours of imbibition, but were susceptible to dehydration injury if dried at 36 hours of imbibition. Dehydration injury appeared as loss of germination, slower growth rates of isolated axes, hypocotyl and root curling, and altered membrane permeability. Increased electrolyte leakage due to dehydration treatment was observed only from isolated axes but not from cotyledons, suggesting that cotyledons are more tolerant of dehydration. The transition from a dehydration-tolerant to a dehydration-susceptible state coincided with radicle elongation. However, the prevention of cell elongation by osmotic treatment in polyethylene glycol (−6 bars) or imbibition in 20 micrograms per milliliter cycloheximide did not prevent the loss of dehydration tolerance suggesting that neither cell elongation nor cytoplasmic protein synthesis was responsible for the change in sensitivity of soybean seeds to dehydration. Furthermore, the rate of dehydration or rate of rehydration did not alter the response to the dehydration stress.  相似文献   

14.
为探讨蝴蝶兰(Phalaenopsis spp.)类原球茎(protocorm-like body,PLB)耐脱水性的主要影响因素,对PLB的平均粒重、含水率、脱水相对湿度、时间、温度、光周期与耐脱水性的关系进行了研究.结果表明,PLB的平均粒重与脱水后失水率、含水率、相对电导率、成活率呈显著或极显著相关.在较高湿度下...  相似文献   

15.
用压力室、电导法和原子吸收分光光度分析法综合分析测定了连翘[Forsythiasuspensa (Thunb.) Vahl]和冬青卫矛(Euonymus japonicus Thunb.)在不同程度脱水胁迫时细胞外部微环境的变化.结果表明:(1)在脱水胁迫条件下,叶片细胞随着脱水胁迫强度的加大,细胞内离子外渗的累计量不断加大,但细胞内离子外渗的速度在不同的区间内并无明显的改变,即细胞膜的透性在所测范围内没有明显变化.(2)脱水胁迫同时造成了叶片质外体和共质体溶液中钠、钾离子浓度的增加,但质外体比共质体溶液中钠、钾离子浓度的增加幅度更高,导致细胞内、外离子浓度梯度的改变和离子平衡膜电位的改变,这些改变有可能引起细胞的次生生理变化,并有可能与植物的伤害反应和抗性有关.  相似文献   

16.
The relationships among desiccation sensitivities of Antiaris toxicaria seeds and axes, changes in activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase, (TBA)-reactive substance were studied. Desiccation tolerance of seeds and axes decreased with dehydration. Desiccation tolerance of axes was higher than that of seeds, and that of epicotyls was higher than radicles. Activities of SOD, CAT and DHAR of seeds increased during the initial phase of dehydration, and then decreased with further dehydration, whereas activities of APX and GR decreased with dehydration. These five enzyme activities of axes, however, increased during the initial phase of dehydration, and then decreased with further dehydration. The rate of superoxide radical production, and the contents of H2O2 and TBA-reactive products of seeds and axes gradually increased with dehydration. These results show that the A. toxicaria seed is a typical recalcitrant seed. Loss of desiccation tolerance in seeds and axes was correlated with activities of seeds and axes.  相似文献   

17.
Long-term preservation of recalcitrant seeds is very difficult because the physiological basis on their desiccation sensitivity is poorly understood. Survival of Antiaris toxicaria axes rapidly decreased and that of immature maize embryos very slowly decreased with dehydration. To understand their different responses to dehydration, we examined the changes in mitochondria activity during dehydration. Although activities of cytochrome (Cyt) c oxidase and malate dehydrogenase of the A. toxicaria axis and maize embryo mitochondria decreased with dehydration, the parameters of maize embryo mitochondria were much higher than those of A. toxicaria, showing that the damage was more severe for the A. toxicaria axis mitochondria than for those of maize embryo. The state I and III respiration of the A. toxicaria axis mitochondria were higher than those of maize embryo, the former rapidly decreased, and the latter slowly decreased with dehydration. The proportion of Cyt c pathway to state III respiration for the A. toxicaria axis mitochondria was low and rapidly decreased with dehydration, and the proportion of alternative oxidase pathway was high and slightly increased with dehydration. In contrast, the proportion of Cyt c pathway for maize embryo mitochondria was high, and that of alternative oxidase pathway was low. Both pathways decreased slowly with dehydration.  相似文献   

18.
19.
B Darbyshire 《Cryobiology》1974,11(2):148-151
The stability of catalase after dehydration to various water potentials was compared with published results on the stability of the enzyme to freezing-thawing cycles. In phosphate buffer catalase was resistant to dehydration, while in acetate buffer dehydration resulted in a 30–50% loss in activity, and dehydration in water completely inactivated the enzyme.Both PVP and Dextran T 110 protected catalase against inactivation during desiccation. These compounds also acted as protectants when the enzyme was frozen.It is suggested that a similar mechanism acts in both stresses and it is considered dehydration after water removal from catalase results in its loss of activity.  相似文献   

20.
Various methods have been tried to prevent cell mortality during dehydration, but the reasons why microorganisms die when submitted to dehydration and rehydration are not well understood. The aim of this study was to further investigate the reasons for yeast mortality during dehydration. Osmotic dehydration and rehydration of Saccharomyces cerevisiae W303-1A were performed at different temperatures. Two different approaches were used: isothermic treatments (dehydration and rehydration at the same temperature), and cyclic treatments (dehydration at an experimental temperature and rehydration at 25 degrees C), with significant differences in viability found between the different treatments. Dehydration at lower and higher temperatures gave higher viability results. These experiments allowed us to propose a hypothesis that relates mortality to a high water flow through an unstable membrane during phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号