首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The review summarizes results concerning photosynthetic systems with chlorophylls and carotenoids obtained by means of spectral methods such as polarized radiation, photoacoustic spectroscopy, delayed luminescence, thermal deactivation, and leading to construction of model systems.  相似文献   

2.
Chromium(VI) is a human carcinogen, primarily affecting the respiratory tract probably via active transport into cells, followed by the reduction to Cr(III) with the formation of DNA-damaging intermediates. Distribution of Cr and endogenous elements within A549 human lung adenocarcinoma epithelial cells, following treatment with Cr(VI) (100 M, 20 min or 4 h) were studied by synchrotron-radiation-induced X-ray emission (SRIXE) of single freeze-dried cells. After the 20-min treatment, Cr was confined to a small area of the cytoplasm and strongly co-localized with S, Cl, K, and Ca. After the 4-h treatment, Cr was distributed throughout the cell, with higher concentrations in the nucleus and the cytoplasmic membrane. This time-dependence corresponded to ~100% or 0% clonogenic survival of the cells following the 20-min or 4-h treatments, respectively, and could potentially be explained by a new cellular protective mechanism. Such processes may also be important in reducing the potential hazards of Cr(III) dietary supplements, for which there is emerging evidence that they exert their anti-diabetic effects via biological oxidation to Cr(VI). The predominance of Cr(III) was confirmed by micro-XANES spectroscopy of intracellular Cr hotspots. X-ray absorption spectroscopy (XANES and EXAFS, using freeze-dried cells after the 0–4-h treatments) was used to gain insight into the chemical structures of Cr(III) complexes formed during the intracellular reduction of Cr(VI). The polynuclear nature of such complexes (probably with a combination of carboxylato and hydroxo bridging groups and O-donor atoms of small peptides or proteins) was established by XAFS data analyses.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
X-ray absorption techniques have been used to characterise the primary coordination sphere of Cu(I) bound to glutathionate (GS), to Atx1 and in Cu2I(GS)2(Atx1)2, a complex recently proposed as the major form of Atx1 in the cytosol. In each complex, Cu(I) was shown to be triply coordinated. When only glutathione is provided, each Cu(I) is triply coordinated by sulphur atoms in the binuclear complex CuI 2(GS)5, involving bridging and terminal thiolates. In the presence of Atx1 and excess of glutathione, under conditions where CuI 2(GS)2(Atx1)2 is formed, each Cu(I) is triply coordinated by sulphur atoms. Given these constraints, there are two different ways for Cu(I) to bridge the Atx1 dimer: either both Cu(I) ions contribute to bridging the dimer, or only one Cu(I) ion is responsible for bridging, the other one being coordinated to two glutathione molecules. These two models are discussed as regards Cu(I) transfer to Ccc2a.
Serge CrouzyEmail:
  相似文献   

4.
Contaminated soils at numerous U.S. Department of Defense, Department of Energy, and other industrial facilities often contain huge inventories of toxic metals such as chromium. Ingestion of soil by children is often the primary risk factor that drives the need for remediation. Site assessments are typically based solely on total soil-metal concentrations and do not consider the potential for decreased bioaccessibility due to metal sequestration by soil. The objectives of this research are to investigate the effect of soil properties on the bioaccessibility of Cr(III) and Cr(VI) as a function of contaminant concentration and aging. The A and upper B horizons of two well-characterized soils, representative of Cr-contaminated soils in the southeastern United States, were treated with varying concentration of Cr(III) and Cr(VI) and allowed to age. The bioaccessibility of the contaminated soils was measured over a 200-d time period using a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The sorption of Cr(III) and Cr(VI) varied significantly as a function of soil type and horizon, and the oxidation state of the contaminant. Solid phase concentrations with Cr(III) were significantly greater than Cr(VI) for any given initial Cr concentration. This is consistent with the mechanisms of Cr(III) vs. Cr(VI) sequestration by the soils, where the formation of Cr(III)-hydroxides can result in the accumulation of large mass fractions of contaminant on mineral surfaces. Overall, Cr bioaccessibility decreased with duration of exposure for all soils and at all solid phase concentrations, with aging effects being more pronounced for Cr(III). The decrease in Cr bioaccessibility was rapid for the first 50 d and then slowed dramatically between 50 and 200 d. In general, the effects of Cr solid phase concentration on bioaccessibility was small, with Cr(III) showing the most pronounced effect; higher solid phase concentrations resulted in a decrease in bioaccessibility. Chemical extraction methods and X-ray Adsorption Spectroscopy analyses suggested that the bioaccessibility of Cr(VI) was significantly influenced by reduction processes catalyzed by soil organic carbon. Soils with sufficient organic carbon had lower Cr bioaccessibility values (~10 to 20%) due to an enhanced reduction of Cr(VI) to Cr(III). In soils where organic carbon was limited and reduction processes were minimal, the bioaccessibility of Cr(VI) dramatically increased (~60 to 70%).  相似文献   

5.
Forzi L  Hellwig P  Thauer RK  Sawers RG 《FEBS letters》2007,581(17):3317-3321
The Fe atom in the bimetallic active site of [NiFe]-hydrogenases has one CO and two cyanide ligands. To determine their metabolic origin, [NiFe]-hydrogenase-2 was isolated from Escherichia coli grown in the presence of L-[ureido-(13)C]citrulline, purified and analyzed by infrared spectroscopy. The spectra indicate incorporation of (13)C only into the cyanide ligands and not into the CO, showing that cyanide and CO have different metabolic origins. After growth of E. coli in the presence of (13)CO only the CO ligand was labelled with (13)C. Labelling did not result from an exchange of the intrinsic CO ligand with the exogenous CO.  相似文献   

6.
Bertamini  M.  Nedunchezhian  N.  Borghi  B. 《Photosynthetica》2001,39(1):59-65
The effect of iron deficiency on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase (RuBPC), and photosystem activities were investigated in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. The contents of chlorophyll (Chl) (a+b) and carotenoids per unit fresh mass showed a progressive decrease upon increase in iron deficiency. Similar results were also observed in content of total soluble proteins and RuBPC activity. The marked loss of large (55 kDa) and small (15 kDa) subunits of RuBPC was also observed in severely chlorotic leaves. However, when various photosynthetic electron transport activities were analysed in isolated thylakoids, a major decrease in the rate of whole chain (H2O methyl viologen) electron transport was observed in iron deficient leaves. Such reduction was mainly due to the loss of photosystem 2 (PS2) activity. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements in leaves. Smaller inhibition of photosystem 1 (PS1) activity was also observed in both mild and severely chlorotic leaves. The artificial electron donors, diphenyl carbazide and NH2OH, markedly restored the loss of PS2 activity in severely chlorotic leaves. The marked loss of PS2 activity was evidently due to the loss of 33, 23, 28-25, and 17 kDa polypeptides in iron deficient leaves.  相似文献   

7.
Holá  D.  Langrová  K.  Kočová  M.  Rothová  O. 《Photosynthetica》2003,41(3):429-442
The activity of photosystems (PS) 1 and 2, together with the content and ratio of photosynthetic pigments, were measured in three inbred lines and two F1 hybrids of maize (Zea mays L.), grown in either optimum or low temperature (LT) conditions. The ability of chilling-stressed plants to deal with the negative effects of long-term exposure to LT and to recover the efficiency of photosynthetic apparatus after their return to optimum temperatures was examined during spring and autumn seasons. The aim was to analyse the possible differences between the rapid and gradual onset of LT on the response of young maize plants to chilling stress. The distinctive superiority of hybrids over their parental lines, found during the exposure of maize plants to LT, was not always retained after the return of chilling-stressed plants to optimum growth conditions. The response of individual genotypes to chilling stress, as well as their ability to recover the photosynthetic efficiency from the cold-induced damage, strongly depended also on the duration and the rapidity of the onset of LT.  相似文献   

8.
Pechová  R.  Kutík  J.  Holá  D.  Kočová  M.  Haisel  D.  Vičánková  A. 《Photosynthetica》2003,41(1):127-136
The effect of three different concentrations of amitrole (AM), a bleaching herbicide affecting carotenogenesis, on chloroplast ultrastructure, photosynthetic pigment contents, and photochemical activity was studied in two maize genotypes differing in photosynthetic characteristics. The content of photosynthetic pigments in leaves of plants treated with low (20 M) AM concentration was similar to control plants and no damaging effect of the herbicide on the ultrastructure of either mesophyll (MC) or bundle-sheath (BSC) cell chloroplasts was observed. Higher (60 and 120 M) concentrations of AM caused a significant decrease in the content of carotenoids (especially xanthophylls), which was followed by photooxidative destruction of chlorophylls and some alterations of chloroplast ultrastructure. MC chloroplasts appeared more sensitive to the damaging effect of AM compared to BSC chloroplasts. A significant decrease in the amount of both granal and intergranal thylakoids in MC chloroplasts was observed with the increasing concentration of AM. As regards BSC chloroplasts, rapid decrease in the volume density of starch inclusions was found in plants treated with higher concentrations of AM. When 120 M AM was used, both MC and BSC chloroplasts contained just a few thylakoid membranes that were strongly altered. The changes in the ultrastructure of MC chloroplasts were accompanied by the changes in their photochemical activity. The formation of chloroplast protrusions after treatment of plants with AM as well as in control plants was also observed.  相似文献   

9.
Cytochrome c6 (Cyt) from the thermophilic cyanobacterium Phormidium laminosum has been purified and characterized. It is a mildly acidic protein, with physicochemical properties very similar to those of plastocyanin (Pc). This is in agreement with the functional interchangeability of the two metalloproteins as electron donors to Photosystem I (PS I). The kinetic analyses of the interaction of Pc and Cyt with Photosystem I show that both metalloproteins reduce PS I with similar efficiencies, according to an oriented collisional kinetic model involving repulsive electrostatic interactions. The thermostability study of the Phormidium Pc/PS I system compared with those from mesophilic cyanobacteria (Synechocystis, Anabaena and Pseudanabaena) reveals that Pc is the partner limiting the thermostability of the Phormidium couple. The cross-reactions between Pc and PS I from different organisms demonstrate not only that Phormidium Pc enhances the stability of the Pc/PS I system using PS I from mesophilic cyanobacteria, but also that Phormidium PS I possesses a higher thermostability than the other photosystems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Using a combination of As and Se K-edge and Hg LIII-edge X-ray absorption spectroscopy, 77Se nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry and molecular modeling, we have structurally characterized the novel species methylmercury(II) seleno bis(S-glutathionyl) arsenic(III). This species is formed in aqueous solution from CH3HgOH and the seleno bis(S-glutathionyl) arsinium ion and constitutes an important first step towards characterizing the observed toxicologically relevant interaction between arsenite, selenite and methylmercury which has been previously reported in mammals.  相似文献   

11.
A structural characterization of bound water molecules in the cyclic tetrasaccharide, cyclo-{-->6}-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->), was carried out by NMR spectroscopy. H-1', 2'-OH, H-3', and 4'-OH of the 3-O-glycosylated residue and H-1 of the 6-O-glycosylated residue were found to cross-relax with protons of bound waters using the double-pulsed field-gradient spin-echo ROESY experiment. In the crystal structure, one water molecule is located in the center of the plate, and its temperature factor is very low, indicating that this water molecule is an intrinsic component.  相似文献   

12.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2001,39(1):119-122
In leaves of field-grown grapevine, the contents of chlorophyll, carotenoids, and soluble proteins and the activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) and nitrate (NR) and nitrite (NiR) reductases were decreased in phytoplasma-infected leaves, but the contents of soluble sugars and total saccharides were markedly increased. In isolated thylakoids, phytoplasma caused marked inhibition of whole chain and photosystem 2 (PS2) activities. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves.  相似文献   

13.
The kinetic and spectroscopic properties of the secondary electron acceptor A1 were determined by flash absorption spectroscopy at room and cryogenic temperatures in a Photosystem I (PS I) core devoid of the iron-sulfur clusters FX, FB and FA. It was shown earlier (Warren, P.V., Golbeck, J.H. and Warden, J.T. (1993) Biochemistry 32: 849–857) that the majority of the flash-induced absorbance increase at 820 nm, reflecting formation of P700+, decays with a t1/2 of 10 s due to charge recombination between P700+ and A1 . Following A1 directly around 380 nm, where absorbance changes due to the formation of P700+ are negligible, two major decay components were resolved in this study with t1/2 of 10 s and 110 s at an amplitude ratio of 2.5:1. The difference spectra between 340 and 490 nm of the two kinetic phases are highly similar, showing absorbance increases from 340 to 400 nm characteristic of the one-electron reduction of the phylloquinone A1. When measured at 10 K, the flash-induced absorbance changes around 380 nm can be fitted with two decay phases of t1/2 15 s and 150 s at an amplitude ratio 1:1. The difference spectra of both kinetic phases from 340 to 400 nm are similar to those determined at 298 K and are therefore attributed to charge recombination in the pair P700+A1 . These results indicate that the backreaction between P700+ and A1 is multiphasic when FX, FB and FA are removed, and only slightly temperature dependent in the range of 298 K to 10 K.Abbreviations Chl chlorophyll - D pathlength for the measuring light through the sample - DPIP 2,6-dichlorophenolindophenol - EPR electron paramagnetic resonance - IR infrared - PS I Photosystem I - Tris Tris(hydroxymethyl)aminomethane - UV ultraviolet Published as Journal Series #10890 of the University of Nebraska Agricultural Research Division and supported by a grant from the National Science Foundation (MCB-9205756).  相似文献   

14.
An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.  相似文献   

15.
16.
The syntheses, crystal structures and properties of compounds [Bu4N]2[Ni(ppdt)2] (1) and [Bu4N]2[Pt(ppdt)2] (2) (ppdt = pyrido[2,3-b]pyrazine-2,3-dithiolate) have been described. Compound 1 crystallizes in P21/c space group (monoclinic system), whereas compound 2 crystallizes in C2/c space group (monoclinic system). The crystal structures of both compounds 1 and 2 have been characterized by C-H?S and C-H?N hydrogen bonding interactions between cation and anions resulting in three-dimensional supramolecular networks in the crystals of 1 and 2, respectively. The acid-base behavior of the ground states of both [Bu4N]2[Ni(ppdt)2] (1) and [Bu4N]2[Pt(ppdt)2] (2) and also the excited state of compound [Bu4N]2[Pt(ppdt)2] (2) in solutions has been studied. The pH dependent changes in the charge transfer absorption and emission spectra are attributed to the protonation on an imine nitrogen of the ppdt ligand. The ground-state basicity constants of the two complexes 1 and 2 have been determined from spectrophotometric analysis by titrating with an weak acid, yielding pKb1 = 8.0 for complex [Bu4N]2[Ni(ppdt)2] (1) and pKb1 = 7.8 for complex [Bu4N]2[Pt(ppdt)2] (2). The excited-state basicity constant pKb1* for complex [Bu4N]2[Pt(ppdt)2] (2) has been determined by a thermodynamic equation using a Förster analysis yielding the value of 1.8. The complex 2 is electrochemically irreversible with an oxidation potential of E1/2 = +0.41 V versus Ag/AgCl in methanol.  相似文献   

17.
The charge generation and recombination dynamics in polymer/polymer blend solar cells composed of poly(3‐hexylthiophene) (P3HT, electron donor) and poly[2,7‐(9,9‐didodecylfluorene)‐alt‐5,5‐(4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothiadiazole)] (PF12TBT, electron acceptor) are studied by transient absorption measurements. In the unannealed blend film, charge carriers are efficiently generated from polymer excitons, but some of them recombine geminately. In the blend film annealed at 160 °C, on the other hand, the geminate recombination loss is suppressed and hence free carrier generation efficiency increases up to 74%. These findings suggest that P3HT and PF12TBT are intermixed within a few nanometers, resulting in impure PF12TBT and disordered P3HT domains. The geminate recombination is likely due to charge carriers generated on isolated polymer chains in the matrix of the other polymer and at the domain interface with disordered P3HT. The undesired charge loss by geminate recombination is reduced by both the purification of the PF12TBT‐rich domain and crystallization of the P3HT chains. These results show that efficient free carrier generation is not inherent to the polymer/fullerene domain interface, but is possible with polymer/polymer systems composed of crystalline donor and amorphous acceptor polymers, opening up a new potential method for the improvement of solar cell materials.  相似文献   

18.
A full‐length complementary (c)DNA encoding ultraviolet (UV)‐sensitive opsin (sws1) was isolated from the retina of the Japanese sardine Sardinops melanostictus. The sws1 phylogenetic tree showed a sister group relationship with the Cypriniformes, following the ray‐finned fish phylogeny. By expressing reconstituted opsin in vitro, it was determined that the maximum absorbance spectrum (λmax) of sws1 is around 382 nm, being intermediate in position between two subtypes of sws1 pigment that are UV sensitive (λmax = 355–380 nm) and violet sensitive (λmax = 388–455 nm), which have been reported to date. The ocular media transmitted >20% transmittance of light in the range of 360–600 nm. In situ hybridization analyses revealed that sws1 messenger (m)RNA is localized in a central single cone surrounded by four double cones in a square mosaic. The square mosaic occupies the ventro‐temporal quadrant of the retina and the in situ hybridization signals were dominant in this area suggesting that the fish may use UV vision when looking upward. Based on these results, considerable significances of potential UV sensitivity, in relation to characteristic habits of S. melanostictus, are discussed.  相似文献   

19.
Biosorption is the process of removal of any chemical molecules by the treatment of biological material. Industrialization resulted in the discharge of various toxic heavy metals into water bodies, which poses serious health hazards to humans and animals. In the present study, live Spirulina platensis was used as a biosorbent for the removal of the heavy metals chromium (Cr(VI)) and lead (Pb(II)) from the aqueous samples. S. platensis were cultured in the presence of different concentrations of heavy metals. The growth of the algal cells was found to be decreased by 59% and 36% in media containing 50 ppm Cr(VI) and Pb(II), respectively. To assess the biosorption of heavy metals, at different time intervals, the spent culture media were used to detect Cr(VI) by atomic absorption spectroscopy method and Pb(II) by 4-(2-pyridylazo)resorcinol indicator method. Results suggested that there was a significant uptake of Cr(VI) and Pb(II) from the medium by S. platensis, with corresponding decrease of metals in the medium. When metal salt solutions or industrial effluent samples were passed through the column containing immobilized live S. platensis in calcium alginate beads, the concentration of Cr(VI) was found to be reduced drastically. The present study indicates the application of S. platensis for the bioremediation of heavy metals from the samples obtained from industrial effluents.  相似文献   

20.
Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号