首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two distinct forms of desensitization have been characterized for N-methyl-D-aspartate (NMDA) receptors. One form results from a weakening of agonist affinity when channels are activated whereas the other form of desensitization results when channels enter a long-lived nonconducting state. A weakening of glycine affinity upon NMDA receptor activation has been reported. Cyclic reaction schemes for NMDA receptor activation require that a concomitant affinity shift should be observed for glutamate agonists. In this study, measurements of peak and steady-state NMDA receptor currents yielded EC50 values for glutamate that differed by 1.9-fold, but no differences were found for another agonist, L-cysteine-S-sulfate (LCSS). Simulations show that shifts in EC50 values may be masked by significant degrees of desensitization resulting from channels entering a long-lived nonconducting state. Simulations also show that a decrease in the degree of desensitization with increasing agonist concentration is a good indicator for the existence of desensitization resulting from a weakening of agonist affinity. Both glutamate and LCSS exhibited this trend. An affinity difference of three- to eightfold between high-and low-affinity agonist-binding states was estimated from fitting of dose-response data with models containing both types of desensitization. This indicates that activation of NMDA receptors causes a reduction in both glutamate and glycine affinities.  相似文献   

2.
J Dudel  C Franke    H Hatt 《Biophysical journal》1990,57(3):533-545
Completely desensitizing excitatory channels were activated in outside-out patches of crayfish muscle membrane by applying glutamate pulses with switching times of approximately 0.2 ms for concentration changes. Channels were almost completely activated with 10 mM glutamate. Maximum activation was reached within 0.4 ms with greater than or equal to 1 mM glutamate. Channel open probability decayed with a time constant of desensitization of 2 ms with 10 mM glutamate and more rapidly at lower glutamate concentrations. The rate of beginnings of bursts (average number of beginnings of bursts per time bin) decayed even faster but approximately in proportion to the glutamate concentration. The dose-response curve for the channel open probability and for the rate of bursts had a maximum double-logarithmic slope of 5.1 and 4.2, respectively. Channels desensitized completely without opening at very low or slowly rising glutamate concentrations. Desensitization thus originates from a closed channel state. Resensitization was tested by pairs of completely desensitizing glutamate pulses. Sensitivity to the second pulse returned rapidly at pulse intervals between 1 and 2 ms and was almost complete with an interval of 3 ms. Schemes of channel activation by up to five glutamate binding steps, with desensitization by glutamate binding from closed states, are discussed. At high agonist concentrations bursts are predominantly terminated by desensitization. Quantal currents are generated by pulses of greater than 1 mM glutamate, and their decay is determined by the duration of presence of glutamate and possibly by desensitization.  相似文献   

3.
Muscle fibers from Drosophila larvae show an L-glutamate-sensitive membrane potential. Bath-applied L-glutamate depolarizes the muscle in the range from 0.5 to 20 microM. Greater concentrations of the agonist repolarize the fibers. The repolarizing effect disappears if chloride is replaced by sulfate in the external medium. Intracellular recordings show the occurrence of depolarizing and hyperpolarizing spontaneous miniature postsynaptic potentials (smpp). Patch-clamp studies indicate the presence of two types of receptor channels: (i) an anion-selective channel activated by both L-glutamate and GABA. In outside out-patches, bathed in symmetrical 140 mM Cl- and 200 microM GABA, the channel displays conductance substates of 40, 80 and 110 pS. In the presence of 200 microM L-glutamate only the 40 and 80 pS substates are observed; (ii) a cation-selective channel activated only by L-glutamate that has a conductance of 104 pS in cell-attached patches (128 mM Na+ outside). The presence of these two types of receptor channels in Drosophila muscle may explain the effect of bath-applied L-glutamate on membrane potential and the presence of inhibitory and excitatory smpp.  相似文献   

4.
J Ma 《Biophysical journal》1995,68(3):893-899
Ca release channels from the junctional sarcoplasmic reticulum (SR) membranes of rabbit skeletal muscle were incorporated into the lipid bilayer membrane, and the inactivation kinetics of the channel were studied at large membrane potentials. The channels conducting Cs currents exhibited a characteristic desensitization that is both ligand and voltage dependent: 1) with a test pulse to -100 mV (myoplasmic minus luminal SR), the channel inactivated with a time constant of 3.9 s; 2) the inactivation had an asymmetric voltage dependence; it was only observed at voltages more negative than -80 mV; and 3) repetitive tests to -100 mV usually led to immobilization of the channel, which could be recovered by a conditioning pulse to positive voltages. The apparent desensitization was seen in approximately 50% of the experiments, with both the native Ca release channel (in the absence of ryanodine) and the ryanodine-activated channel (1 microM ryanodine). The native Ca release channels revealed heterogeneous gating with regard to activation by ATP and binding to ryanodine. Most channels had high affinity to ATP activation (average open probability (po) = 0.55, 2 mM ATP, 100 microM Ca), whereas a small portion of channels had low affinity to ATP activation (po = 0.11, 2 mM ATP, 100 microM Ca), and some channels bound ryanodine faster (< 2 min), whereas others bound much slower (> 20 min). The faster ryanodine-binding channels always desensitized at large negative voltages, whereas those that bound slowly did not show apparent desensitization. The heterogeneity of the reconstituted Ca release channels is likely due to the regulatory roles of other junctional SR membrane proteins on the Ca release channel.  相似文献   

5.
Inhibitory glutamate receptor channels   总被引:5,自引:0,他引:5  
Inhibitory glutamate receptors (IGluRs) are a family of ion channel proteins closely related to ionotropic glycine and γ-aminobutyric acid (GABA) receptors; They are gated directly by glutamate; the open channel is permeable to chloride and sometimes potassium. Physiologically and pharmacologically, IGluRs most closely resemble GABA receptors; they are picrotoxin-sensitive and sometimes crossdesensitized by GABA. However, the amino acid sequences of cloned IGluRs are most similar to those of glycine receptors. Ibotenic acid, a conformationally restricted glutamate analog closely related to muscimol, activates all IGluRs. Quisqualate is not an IGluR agonist except among pulmonate molluscs and for a unique multiagonist receptor in the crayfishAustropotamobius torrentium. Other excitatory amino acid agonists are generally ineffective. Avermectins have several effects on IGluRs, depending on concentration: potentiation, direct gating, and blockade, both reversible and irreversible. Since IGluRs have only been clearly described in protostomes and pseudocoelomates, these effects may mediate the powerful antihelminthic and insecticidal action of avermectins, while explaining their low toxicity to mammals. IGluRs mediate synaptic inhibition in neurons and are expressed extrajunctionally in striated muscles. The presence of IGluRs in a neuron or muscle is independent of the presence or absence of excitatory glutamate receptors or GABA receptors in the cell. Generally, extrajunctional IGluRs in muscle have a higher sensitivity to glutamate than do neuronal synaptic receptors. Some extrajunctional receptors are sensitive in the range of circulating plasma glutamate levels, suggesting a role for IGluRs in regulating muscle excitability. The divergence of the IGlu/GABA/Gly/ACh receptor superfamily in protostomes could become a powerful model system for adaptive molecular evolution. Physiologically and pharmacologically, protostome receptors are considerably more diverse than their vertebrate counterparts. Antagonist profiles are only loosely correlated with agonist profiles (e.g., curare-sensitive GABA receptors, bicuculline-sensitive AChRs), and pharmacologically identical receptors may be either excitatory or inhibitory, and permeable to different ions. The assumption that agonist sensitivity reliably connotes discrete, homologous receptor families is contraindicated. Protostome ionotropic receptors are highly diverse and straightforward to assay; they provide an excellent system in which to study and integrate fundamental questions in molecular evolution and adaptation.  相似文献   

6.
Single channel kinetics of a glutamate receptor.   总被引:1,自引:3,他引:1       下载免费PDF全文
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.  相似文献   

7.
Kinetics of homomeric GluR6 glutamate receptor channels.   总被引:5,自引:1,他引:5       下载免费PDF全文
M Heckmann  J Bufler  C Franke    J Dudel 《Biophysical journal》1996,71(4):1743-1750
We studied the kinetics of the unedited version of rat GluR6 glutamate (glu) receptor channels, GluR6Q, in outside-out patches using a system for submillisecond solution exchange. Half-maximum activation of the channels was reached with approximately 0.5 microM glu. The maximum slope of the double-logarithmic plot of the peak current versus glu was approximately 1.3, indicating that at least two binding steps are necessary to open the channels. Currents in response to a pulse of 10 microM glu had a short rise time (10-90% of peak current) of approximately 220 microseconds at approximately 20 degrees C. The rise time increased with falling glu concentration, reaching approximately 6.0 ms with 10 microM glu. In the continued presence of glu, the channels desensitized, and this desensitization can be described with a single time constant of approximately 7.0 ms for a pulse of 10 microM glu. The steady-state current in response to a long pulse of 10 microM glu was below 1/280th of the peak current. The time constant of desensitization was found to be independent of concentration between 30.0 and 0.3 microM glu, but to be increased for lower concentrations. After a short pulse of 1 ms duration and 10 or 0.3 microM glu, currents decayed with a time constant of approximately 2.5 ms. Recovery from desensitization after a pulse took approximately 5 s, and the half-time of recovery was approximately 2.2 s. Continuous application of low concentrations of glutamate reduced the peak currents in response to a pulse of 10 microM glu markedly. Fifty percent response reduction was observed in the continuous presence of approximately 0.3 microM glu. Our results for homomeric GluR6 agree with a cyclical reaction scheme developed for completely desensitizing, glu-activated channels on crayfish muscles.  相似文献   

8.
9.
Outside-out patches excised from extrajunctional membrane of locust muscle were subjected to "concentration jumps" of L-glutamate, using the liquid filament switch technique, to study channel opening and closing rates, desensitization onset, and recovery from desensitization of a quisqualate-sensitive glutamate receptor (qGluR). Based on data obtained from these experimental studies, computer modeling techniques have been used in an attempt to simulate the behavior of qGluR during a concentration jump of L-glutamate. A linear model with three closed states (one unliganded, one monoliganded, and one biliganded), one open state (binding two molecules of L-glutamate), and two desensitization states (the one monoliganded, the other biliganded) leading from the unliganded closed state simulated all of the experimentally observed behavior. The results are discussed in the context of previous equilibrium studies in which desensitization was inhibited with concanavalin A and for which a ten-state model was required to simulate the behavior of qGluR.  相似文献   

10.
In the presence of tetraethylammonium or barium ions, the larval muscle fibers of Drosophila melanogaster were found to produce an all-or-none action potential operated by the calcium channels. The development of this distinctive membrane property during the maturation of muscle cells was studied by measuring the maximum rate of rise of the action potential in the larval muscle fibers at different stages of development from the sixteenth to ninety-sixth hours after hatching. The value increased significantly with age until a peak was reached at the sixty-fourth hour, although it became lower again as puparium formation neared at about the ninety-sixth hour. This suggests that during larval development the muscle fibers develop the ability to generate an action potential due to an inward current through the calcium channels, although the ability became lower at the later stage of larval development.  相似文献   

11.
As in the case of many ligand-gated ion channels, the biochemical and electrophysiological properties of the ionotropic glutamate receptors have been studied extensively. Nevertheless, we still do not understand the molecular mechanisms that harness the free energy of agonist binding, first to drive channel opening, and then to allow the channel to close (desensitize) even though agonist remains bound. Recent crystallographic analyses of the ligand-binding domains of these receptors have identified conformational changes associated with agonist binding, yielding a working hypothesis of channel function. This opens the way to determining how the domains and subunits are assembled into an oligomeric channel, how the domains are connected, how the channel is formed, and where it is located relative to the ligand-binding domains, all of which govern the processes of channel activation and desensitization.  相似文献   

12.
Single glutamate-gated ion channels with a conductance of 135 pS are demonstrated in tonic muscle fibres of the locust hindgut. Channel kinetics closely resemble those of glutamatergic channels in locust skeletal muscles. Glutamate concentrations increasing within the range from 5 X 10(-5) to 1 X 10(-3) M result in an increase of the frequency of channel opening and a decrease in channel closed times. Delta-philanthotoxin, a toxin isolated from the venom of the digger wasp Philanthus triangulum, inhibits channel activity by blocking open channels and increasing channel closed times.  相似文献   

13.
Glutamate-gated ion channels belong to a complex family of receptors containing several pharmacological subtypes. They are thought to be essential for the acquisition of associative memory and for activity-dependent synaptogenesis, and have been implicated in several central nervous system diseases. Within the past year, molecular cloning of the first glutamate receptor channel and several related subunits has opened new approaches for understanding the basis of these important phenomena.  相似文献   

14.
The voltage-dependent gating of transient A2-type potassium channels from primary cultures of larval Drosophila central nervous system neurons was studied using whole-cell and single-channel voltage clamp. A2 channels are genetically distinct from the Shaker A1 channels observed in Drosophila muscle, and differ in single-channel conductance, voltage dependence, and gating kinetics. Single A2 channels were recorded and analyzed at -30, -10, +10, and +30 mV. The channels opened in bursts in response to depolarizing steps, with three to four openings per burst and two to three bursts per 480-ms pulse (2.8-ms burst criterion). Mean open durations were in a range of 2-4 ms and mean burst durations in a range of 9-17 ms. With the exception of the first latency distributions, none of the means of the distributions measured showed a consistent trend with voltage. Macroscopic inactivation of both whole-cell A currents and ensemble average currents of single A2 channels was well fitted by a sum of two exponentials. The fast time constants in different cells were in a range of 9-25 ms, and the slow time constants in a range of 60-140 ms. A six-state kinetic model (three closed, one open, two inactivated states) was tested at four command voltages by fitting frequency histograms of open durations, burst durations, burst closed durations, number of openings per burst, and number of bursts per trace. The model provided good fits to these data, as well as to the ensemble averages. With the exception of the rates leading to initial opening, the transitions in the model were largely independent of voltage.  相似文献   

15.
Synchronized cells of Tetrahymena pyriformis strain GL-C were exposed to cycloheximide (CHI) (0.2 μg per ml) from 40 to 140 minutes after the end of the heat synchronizing treatment. Recovery takes place during this treatment (Frankel, 1970). The CHI was washed out at 140 minutes. At various times after washout dividing cells were isolated in micro-drops under oil, and one daughter was transferred to a test drop containing CHI (0.2 μ per ml). The generation time of both daughters was recorded, and the “percent prolongation” of generation time brought about by the test exposure of one cell to CHI was computed for each cell-pair. This procedure was carried out for groups of cell-pairs at different times after the end of the CHI pretreatment. Comparable tests were performed with two control series, one which had not previously been exposed to CHI and another for which CHI was present continuously. Comparison of the prolongation observed in control and experimental series demonstrated that cells which have earlier undergone recovery in CHI gradually become resensitized following washout of the drug. Cells progressively lose most of their original resistance in a period of somewhat over three cell generations; however, a small but significant fraction of this resistance is still retained seven to eight generations after the CHI pretreatment.  相似文献   

16.
The phenotypic analysis of a new spontaneous recessive lethal mutation of Drosophila melanogaster is described. The lethal(2)thin mutation maps at 85.6 on chromosome 2 and produces a characteristic long, thin puparium due to an inability to shorten the larval form prior to pupariation. Histological examination of larval muscles and behavioural studies support the hypothesis that the mutation affects the striated structure of the larval muscles in late larval stages. Lethality largely occurs due to an inability to perform the movements necessary for pupation, although there is evidence for larval and possibly embryonic lethal phases.  相似文献   

17.
TRPM channels have emerged as key mediators of diverse physiological functions. However, the ionic permeability relevant to physiological function in vivo remains unclear for most members. We report that the single Drosophila TRPM gene (dTRPM) generates a conductance permeable to divalent cations, especially Zn(2+) and in vivo a loss-of-function mutation in dTRPM disrupts intracellular Zn(2+) homeostasis. TRPM deficiency leads to profound reduction in larval growth resulting from a decrease in cell size and associated defects in mitochondrial structure and function. These phenotypes are cell-autonomous and can be recapitulated in wild-type animals by Zn(2+) depletion. Both the cell size and mitochondrial defect can be rescued by extracellular Zn(2+) supplementation. Thus our results implicate TRPM channels in the regulation of cellular Zn(2+) in vivo. We propose that regulation of Zn(2+) homeostasis through dTRPM channels is required to support molecular processes that mediate class I PI3K-regulated cell growth.  相似文献   

18.
This review describes briefly what is known about the early steps of mesoderm differentiation in the fruitfly Drosophila melanogaster. After a summary of general aspects including mesoderm differentiation, mesoderm cell migration and subdivision of the mesoderm, more detail is given about the specification of muscle progenitor cells, due to their role as the earliest obvious landmarks in muscle fiber development in Drosophila. Particular focus is given to recent results on the role of asymmetric cell division in muscle differentiation. Furthermore a short summary of myoblast fusion is provided.  相似文献   

19.
Abstract.  Drosophila larval muscles are commonly used for developmental assessment in regard to various mutations of synaptically relevant molecules. In addition, the molecular sequence of the glutamate receptors on the muscle fibre have been described; however, the pharmacological profiles to known agonists and antagonists have yet to be reported. Here, the responses of N -methyl- d -aspartic acid, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), l -glutamate, kainate, quisqualic acid, NBQX, AP5 and DNQX are characterized with regard to synaptic transmission and direct effects on the muscle fibres. The muscle fibres depolarize to application of glutamate or quisqualate and the excitatory postsynaptic potential (EPSP) amplitudes are diminished. Kainate does not alter the muscle membrane potential but does reduce the EPSP amplitude. The known antagonists NBQX, AP5 and DNQX have no substantial effect on synaptic transmission at 1 m m , nor do they block the response of quisqualate. Kainate may be acting as a postsynaptic antagonist or via autoreceptors presynaptically to reduce evoked transmission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号