首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatin-derived acidic peptides (ACPs) have been shown to acutely modulate hypothalamic catecholamine release. To investigate whether this effect is mediated through membrane polysialylated neural-cell adhesion molecule (PSA-N-CAM), we pretreated rat hypothalamic synaptosomes with neuraminidase enzyme, which partially cleaves sialic acid residues from N-CAM, and perfused them with ACP-1 (Asp-Asp-Ser-Asp-Glu-Glu-Asn) or a more lipophilic derivative, ACP-2 ([Ala-Ile-Ser-Pro]-Asp-Asp-Ser-Asp-Glu-Glu-Asn). We have found that neuraminidase completely abolish the inhibitory effect of ACP-1 on dopamine release, while the inhibitory activity of ACP-1 on norepinephrine release is partially lost. On the other hand, ACP-2 inhibition of dopamine release is not modified by neuraminidase pretreatment.  相似文献   

2.
Abstract: N′-Acetyl-d -[6-3H]mannosamine was administered to 13- and 28-day-old rats by intraventricular injection. At various time intervals following the injection, synaptic membranes were prepared and the incorporation of radiolabel into sialic acid residues released from endogenous glycoproteins and gangliosides by intrinsic sialidase determined. Radiolabel was incorporated into synaptic membrane gangliosides and glycoproteins, and at all times tested, >90% of the label was associated with sialic acid. Sialic acid released from endogenous glycoproteins by intrinsic sialidase present in 28-day membranes incorporated only 20–25% as much radiolabel per nmole as sialic acid released by mild acid hydrolysis or by exogenous neuraminidase. In contrast, sialic acid released from glycoproteins present in 13-day-old membranes by intrinsic sialidase, mild acid hydrolysis, or exogenous neuraminidase all were similarly labelled. At both ages the specific radioactivity (cpm/nmol) of sialic acid released from gangliosides by the intrinsic enzyme was similar to the total ganglioside sialic acid released by mild acid hydrolysis. The results identify glycoprotein substrates for intrinsic synaptic membrane sialidase as a distinct metabolic class in the mature brain and suggest the occurrence of a developmentally related change in the metabolism of these glycoproteins.  相似文献   

3.
The surface of vascular endothelium bears a glycocalyx comprised, in part, of a complex mixture of oligosaccharide chains attached to cell-surface proteins and membrane lipids. Importantly, understanding of the structure and function of the endothelial glycocalyx is poorly understood. Preliminary studies have demonstrated structural differences in the glycocalyx of pulmonary artery endothelial cells compared with pulmonary microvascular endothelial cells. Herein we begin to probe in more detail structural and functional attributes of endothelial cell-surface carbohydrates. In this study we focus on the expression and function of sialic acids in pulmonary endothelium. We observed that, although pulmonary microvascular endothelial cells express similar amounts of total sialic acids as pulmonary artery endothelial cells, the nature of the sialic acid linkages differs between the two cell types such that pulmonary artery endothelial cells express both α(2,3)- and α(2,6)-linked sialic acids on the surface (i.e., surficially), whereas microvascular endothelial cells principally express α(2,3)-linked sialic acids. To determine whether sialic acids play a role in endothelial barrier function, cells were treated with neuraminidases to hydrolyze sialic acid moieties. Disruption of cell-cell and cell-matrix adhesions was observed following neuraminidase treatment, suggesting that terminal sialic acids promote endothelial barrier integrity. When we measured transendothelial resistance, differential responses of pulmonary artery and microvascular endothelial cells to neuraminidase from Clostridium perfringens suggest that the molecular architecture of the sialic acid glycomes differs between these two cell types. Collectively our observations reveal critical structural and functional differences of terminally linked sialic acids on the pulmonary endothelium.  相似文献   

4.
Cardiovascular disease (CVD) is now the largest killer in western society, and the importance of interactions between vascular endothelium and circulating blood components in disease pathogenesis is well established. Microparticles are a heterogeneous population of <1 μm blood borne particles that arise from blebbing or shedding of cell membranes. The microparticle population includes several classes of apoptotic bodies; however, increased numbers of procoagulant microparticles have been described in plasma from people with CVD. We have previously demonstrated that interactions of monocytes and platelets with isolated inflamed endothelial cells lead to production of pro-coagulant tissue factor bearing microparticles under laminar flow conditions. Here we have investigated microparticle production after perfusion of human whole blood through intact inflamed human umbilical artery. When blood was perfused through umbilical arteries which had been pre-stimulated with tumour necrosis factor (TNFα) for 18 h under flow conditions, there was significantly increased production of microparticles from both platelet and non-platelet sources, in particular from erythrocytes. To determine whether microparticles generated during interactions with inflamed endothelium could induce a pro-inflammatory response in trans, we isolated microparticles by centrifugation after co-culture and incubated with isolated quiescent endothelial cells followed by measurement of reactive oxygen species formation. Microparticles derived from co-culture with inflamed endothelium induced significantly enhanced levels of reactive oxygen species (ROS). These data suggest that presence of an inflamed endothelium causes release of pro-inflammatory microparticles from circulating blood cells, which could contribute to prolonged endothelial activation and subsequent atherosclerotic changes in blood vessels subjected to inflammatory insult.  相似文献   

5.
The naturally occurring sialic acids can have different types of N- and O-substitutions, resulting in more than 20 known isomers and compounds. Most methods for the detailed study of these various sialic acids require that the molecules be first released from their alpha-glycosidic linkage. When mild acid hydrolysis is used for this purpose, significant destruction of O-substituent groups occur. On the other hand, the presence of O-substituent groups renders the sialic acid molecule partially or completely resistant to the action of the currently known neuraminidase. To circumvent this problem, we searched for a neuraminidase whose activity is not affected by O-substitution. We reasoned that because Streptococcus sanguis from the human oral cavity is continually exposed to O-substituted sialic acids, its extracellular neuraminidase might not be blocked by O-substitution. We therefore purified this enzyme 3100-fold (56% yield) using ammonium sulfate precipitation, N-(p-aminophenyl)oxamic acid-agarose affinity chromatography, and chromatography on quaternary aminoethyl (QAE)-Sephadex, sulfopropyl (SP)-Sephadex, and Sephacryl S-200. The purified preparation is free of other significant glycosidase activities and proteolytic activities. It is capable of quantitatively releasing all the O-acetylated sialic acids that we studied with the single exception of the 4-O-acetylated sialic acid of equine submaxillary mucin. The activity of the enzyme is also not restricted by the type pf sialic acid linkage or the nature of the underlying oligosaccharide. However, it has maximal activity on gangliosides only in the presence of detergents. The general properties of this enzyme are described and its substrate specificities are contrasted with those of the commonly used neuraminidase from Vibrio cholerae.  相似文献   

6.
The effect of prostacyclin on platelet aggregation and adhesion was investigated in everted pieces of rabbit abdominal aorta, from which the endothelium had previously been removed. Citrated human blood, to which different, concentrations of prostacyclin (0.1-100 ng/ml) were added, was perfused through the vessels, after which sections were examined and evaluated by light microscopy. Prostacyclin inhibited thrombus formation at concentrations greater than 0.1 ng/ml, whereas 20 ng/ml were required to reduce the amount of adhesion to the subendothelial surface. Thus prostacyclin prevents thrombus formation at much lower concentrations than are needed to inhibit platelet-vessel wall interaction.  相似文献   

7.
The effect of prostacyclin on platelet aggregation and adhesion was investigated in everted pieces of rabbit abdominal aorta, from which the endothelium had previously been removed. Citrated human blood, to which different concentrations of prostacyclin (0.1–100 ng/ml) were added, was perfused through the vessels, after which sections were examined and evaluated by light microscopy. Prostacyclin inhibited thrombus formation at concentrations greater than 0.1 ng/ml, whereas 20 ng/ml were required to reduce the amount of adhesion to the subendothelial surface. Thus prostacyclin prevents thrombus formation at much lower concentrations than are needed to inhibit platelet-vessel wall interaction.  相似文献   

8.
Intact human blood platelets were radioactively labelled at the surface by techniques specific for proteins or glycoproteins. Labelled platelet samples were analyzed by a high-resolution two-dimensional separation system involving isoelectric focusing in the first dimension and discontinuous sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the second. The major platelet membrane glycoprotein (GP) bands (Ib, IIb, IIIa and IIIb) were found to be highly heterogeneous even after removal of terminal sialic acid residues. Lactoperoxidase-catalyzed iodination of platelets showed that the major labelled proteins (Ib, IIb, IIIa and IIIb) had altered isoelectric points (pI) and molecular weights after neuraminidase treatment. A number of membrane glycoproteins previously undetected by one-dimensional gel electrophoresis were demonstrated and good evidence provided that the major platelet surface proteins are glycosylated.  相似文献   

9.
Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×107 cells/mL; 30 min) isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2), while CD61 (platelet marker) and CD62P (activated platelet marker) were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway) and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.  相似文献   

10.
神经氨酸酶不仅存在于流感病毒,在细菌中也有分布。细菌的神经氨酸酶可裂解宿主体内糖结合物末端的神经氨酸残基,有助于细菌实现在宿主体内的定殖、穿透和扩散,是细菌重要的毒力因子之一。链球菌是自然界广泛存在的人畜共患的病原菌,在多种链球菌中均可检测出神经氨酸酶。肺炎链球菌的神经氨酸酶研究最为透彻,该菌可产生3种神经氨酸酶(NanA,NanB,NanC),NanA不但可以发挥酶的催化作用,分解唾液酸残基,暴露细菌的黏附受体,还能不依赖酶活基团,辅助细菌感染宿主细胞;NanB催化后产物可作为细菌的碳源;NanC可辅助细菌入侵脑部。在无乳链球菌和猪链球菌中,神经氨酸酶的活性一直未得到确切的验证,可能是由于它们的荚膜均含有神经氨酸,所以其神经氨酸酶的活性逐渐在进化中丧失。另外一些链球菌,例如化脓链球菌和C、G、L群链球菌,其神经氨酸酶的底物偏好相近,均对唾液类黏蛋白的催化活性较强,利于链球菌在含唾液类黏蛋白的组织中扩散。在口腔链球菌和血链球菌中,神经氨酸酶破坏血液成分中的神经氨酸链。由此可见,神经氨酸酶的特异性催化作用与链球菌在宿主体内的定植部位密切相关。此外,随着科技的发展,对神经氨酸酶的活性检测,也由早期的硫代巴比妥法,转为现在的荧光值和吸光度的测定,更为便捷和敏感。本文旨在对链球菌的神经氨酸酶的作用机制、与毒力关系及酶活测定方法等研究进展作一综述,为从事相关研究的科学工作者提供参考。  相似文献   

11.
Low density lipoprotein (LDL) isolated from the blood of healthy donors was partially desialylated by incubating the lipoprotein with sialidase (neuraminidase). The addition of LDL treated with neuraminidase to cultured human aortic intimal cells of smooth muscle origin caused a substantial increase in intracellular cholesteryl esters, free cholesterol and triglycerides. Cultured cells took up and degraded desialylated LDL much more effectively than untreated (native) LDL. LDL were also isolated from an atherogenic blood plasma of patients with coronary artery disease, i.e. the plasma capable of inducing the accumulation of lipids in cultured cells. Patients' LDL, similarly to the mother plasma, were atherogenic, i.e. stimulated the accumulation of intracellular lipids. LDL isolated from nonatherogenic plasma of healthy donors proved to be nonatherogenic. Atherogenic patients' LDL had a 2- to 5-fold lower level of sialic acid as compared with nonatherogenic LDL of healthy donors. The uptake and degradation of atherogenic patients' LDL were much more effective than in the case of nonatherogenic LDL of healthy donors. We assume that atherogenic properties of LDL obtained from patients' blood plasma are explained exactly by a low sialic acid content.  相似文献   

12.
When intact guinea-pig granulocytes (polymorphonuclear leucocytes) disrupted by sonication or with detergent were treated with neuraminidase from Vibrio cholerae, 3.1--3.2 nmol of sialic acid/10(7) cells was released. By using a chromatographic procedure for the specific determination of total cell sialic acid, this releasable portion was found to constitute 70% of the total sialate. All of the neuraminidase-releasable sialic acid of the cells could be removed by enzymic treatment of intact cells with neuraminidase. It thus seemed likely that the neuraminidase-releasable sialic acid is all on the cell surface. To make sure that the result was not due to entry of neuraminidase into the cells, the enzyme was bound covalently to Sepharose 6B, and intact polymorphonuclear leucocytes were treated with the bound enzyme. All of the neuraminidase-releasable sialic acid could still be removed, though more slowly. The cells remained intact and only 1.5--2% of the bound enzyme was released from the Sepharose during incubation. Freed enzyme could have been responsible, at the very most, for release of 18% of the sialic acid. Fractionation studies showed that the nucleus and cytoplasm contain low amounts of sialic acid and that the neuraminidase-releasable sialic acid distributes in a manner similar to the distribution of 5'-nucleotidase, an unambiguous marker for the plasma membrane in these cells. Thus neuraminidase-releasable sialate constitutes a clear marker for the membrane of polymorphonuclear leucocytes. Most of the neuraminidase-insensitive sialate was present in the granule fraction. Removal of sialic acid from intact polymorphonuclear leucocytes did not affect their ecto-AMPase, -ATPase and -p-nitrophenyl phosphatase activities.  相似文献   

13.
Arteries are capable of producing significantly larger quantities of protacyclin than are veins. To test the hypothesis, whether prostacyclin production by the vessel wall is related to blood pressure and flow, we measured the amounts of PGI2 released and synthesized by venous segments transplanted for 6 weeks into the arterial circulation. These results were compared with the production of prostacyclin by normal veins and arteries. In 20 dogs a segment of jugular vein was interposed into the carotid system; a sham dissection was done on the opposite side. “Arterialized” vein grafts showed prominent intima lined by endothelium, medial smooth muscle cell proliferation and fibrotic proliferation in adventitia. Spontaneous and arachidonic acid- stimulated prostacyclin production (measured by radioimmunoassay for 6-keto-PGF) was not significantly different between arterialized venous autografts and jugular veins. Significantly larger amounts of prostacyclin were synthesized by the carotid artery. Thus, histologic changes and rheologic effects occurring in vein grafts transposed to the arterial site do not affect prostacyclin production.  相似文献   

14.
Catalases which had been purified from the livers of mouse, rat and guinea pig were subjected to mild periodate oxidation followed by reduction with sodium boro[3H]hydride in order to test for the presence of sialic acid. A radioactively labelled moiety resulted, which behaved as a derivative of N-acetyl neuraminic acid during mild acid hydrolysis, neuraminidase treatment, ion exchange chromatography and paper chromatography. It is concluded that mammalian catalases are glycoproteins, and possess variable amounts of N-acetyl neuraminic acid in their carbohydrate moiety.  相似文献   

15.
The surface of endothelial cells is decorated with a wide variety of membrane-bound macromolecules that constitute the glycocalyx. These include glycoproteins bearing acidic oligosaccharides with terminal sialic acids (SA), and proteoglycans with their associated glycosaminoglycan that include: heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA). In this study, enzymes were used to selectively degrade glycocalyx components from the surface of bovine aortic endothelial cells and the effects of these alterations on fluid shear-induced nitric oxide (NO) and prostacyclin (PGI(2)) production were determined. Depletion of HS, HA, and SA, but not CS, blocked shear-induced NO production. Surprisingly, the same enzyme depletions that blocked NO production had no influence on shear-induced PGI(2) production. The results may be interpreted in terms of a glypican-caveolae-eNOS mechanism for shear-induced NO transduction, with PGI(2) being transduced in basal adhesion plaques that sense the same reaction stress whether the glycocalyx is intact or not.  相似文献   

16.
Macrophage-activating factor (MAF) activates macrophages so that their cytotoxic capacity is enhanced. This effect of MAF is inhibited by removing fucose from the macrophage cell surface by incubation with fucosidase, or by removing sialic acid by treatment with neuraminidase. After incubation with fucosidase or neuraminidase the average inhibition of cytotoxicity was 92 and 73%, respectively. β-Galactosidase had no effect. Addition of the specific products, fucose or sialic acid, to the incubation mixture of macrophages and enzyme blocked the effect of the enzymes. Taken together these observations indicate that macrophage surface fucose and sialic acid are essential for the interaction of MAF with macrophages which results in enhanced cytotoxicity for tumor cells.  相似文献   

17.
The pinocytosis by fibroblasts of beta-hexosaminidase (EC 3.2.1.30) excreted by cultured skin fibroblasts from a patient with I-cell disease was not enhanced by neuraminidase treatment of the enzyme. The uptake of sialic acid-rich normal plasma beta-hexosaminidase was minimal and neuraminidase treatment did not appreciably enhance uptake. In contrast, sialic acid-rich normal seminal fluid beta-hexosaminidase was readily pinocytosed regardless of neuraminidase treatment. Thus the presence of sialic acid on beta-hexosaminidase does not influence uptake and a neuraminidase deficiency in I-cell disease may not be directly responsible for excessive extracellular enzyme.  相似文献   

18.
Evidence is presented to indicate a generalized role for the terminal sialic acid residues of circulating erythrocytes of rabbit. Neuraminidase is shown to remove only sialic acid from these erythrocytes. Neuraminidase-treated and intact rabbit erythrocytes have similar in vitro properties, except those of cellular charge and cellular adhesion in their sera. These properties include similar shape, osmotic fragility curve, autohemolysis at 37°, K+ retention and pyruvate kinase activity. The D-glucose 6-phosphate dehydrogenase and the cholinesterase activities are higher on the neuraminidase-treated erythrocytes than on the intact ones. After injection into rabbits, the sialic acid-less erythrocytes tested, were promptly removed from the circulation; intact erythrocytes, previously incubated under the same conditions but without neuraminidase, were removed from the circulation after a significantly longer period.  相似文献   

19.
The isolated perfused rat liver system has been used to monitor the utilization of N-[3H]acetyl-D-galactosamine and N-acetyl-D-[1-14C]galactosamine for the biosynthesis of radiolabelled glycoproteins, which are subsequently secreted into the plasma. Both radiolabels appear in a number of different glycoproteins, predominantly as sialic acid and N-acetylglucosamine. The ratio of labelled sialic acid to labelled N-acetylglucosamine varies for different glycoproteins, but the bulk of N-acetyl-D-galactosamine is incorporated without deacetylation.  相似文献   

20.

Background

Abnormal adhesion of red blood cells (RBCs) to vascular endothelium is often associated with reduced levels of sialic acids on RBC membranes and with elevated levels of pro-adhesive plasma proteins. However, the synergistic effects of these two factors on the adhesion are not clear. In this work, we tested the hypothesis that macromolecular depletion interaction originating from non-adsorbing macromolecules can promote the adhesion of RBCs with reduced sialic acid content to the endothelium.

Methods

RBCs are treated with neuraminidase to specifically remove sialic acids from their surface followed by the evaluation of their deformability, zeta potential and membrane proteins. The adhesion of these enzyme-treated RBCs to cultured human umbilical vein endothelial cells (ECs) is studied in the presence of 70 or 500 kDa dextran with a flow chamber assay.

Results

Our results demonstrate that removal of sialic acids from RBC surface can induce erythrocyte adhesion to endothelial cells and that such adhesion is significantly enhanced in the presence of high-molecular weight dextran. The adhesion-promoting effect of dextran exhibits a strong dependence on dextran concentration and molecular mass, and it is concluded to originate from macromolecular depletion interaction.

Conclusion

These results suggest that elevated levels of non-adsorbing macromolecules in plasma might play a significant role in promoting endothelial adhesion of erythrocytes with reduced sialic acids.

General significance

Our findings should therefore be of great value in understanding abnormal RBC–EC interactions in pathophysiological conditions (e.g., sickle cell disease and diabetes) and after blood transfusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号