共查询到20条相似文献,搜索用时 0 毫秒
1.
Artificial chromosome formation in maize (<Emphasis Type="Italic">Zea mays</Emphasis> L.) 总被引:1,自引:0,他引:1
Evgueni V. Ananiev Chengcang Wu Mark A. Chamberlin Sergei Svitashev Chris Schwartz William Gordon-Kamm Scott Tingey 《Chromosoma》2009,118(2):157-177
We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins
of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize
immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes
in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited
centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated
to be 15–30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes
contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes
were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous
cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal
replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide
a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics
and breeding.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Evgueni V. Ananiev, deceased
Evgueni V. Ananiev and Chengcang Wu contributed equally to this work.
Novel materials described in this publication may be available for noncommercial research purposes on acceptance and signing
of a material transfer agreement. In some cases, such materials may contain or be derived from materials obtained from a third
party. In such cases, the distribution of material will be subject to the requisite permission from any third-party owners,
licensors, or controllers of all or parts of the material. Obtaining any permission will be the sole responsibility of the
requestor. 相似文献
2.
3.
Xinye Zhang Oswaldo Valdés-López Consuelo Arellano Gary Stacey Peter Balint-Kurti 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(6):1155-1168
Key message
Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified.Abstract
Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.4.
Cadmium uptake, translocation and localization in maize roots and shoots at the tissue and cellular level were investigated. Metal accumulation in plant organs as well as symptoms of Cd toxicity were closely correlated with an increase in Cd concentration applied (5 – 300 M). Most of the metal taken up was retained in roots, mainly inside the cells of endodermis, pericycle and central cylinder parenchyma. Accumulation of phytochelatins and related peptides also depended on Cd concentration in the nutrient solution. 相似文献
5.
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22α-hydroxylation reactions in the BR biosynthetic pathway and it is
the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and
a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated
that the defects of three Arabidopsis
DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in
seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These
findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
6.
A leaf-based regeneration and transformation system for maize (<Emphasis Type="Italic">Zea mays</Emphasis> L.) 总被引:3,自引:0,他引:3
Efficient methods for in vitro propagation, regeneration, and transformation of plants are of pivotal importance to both basic
and applied research. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue
culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly
used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The
procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. We have developed a novel
tissue culture and plant regeneration system that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse
facilities. We report here: (i) a protocol for the efficient induction of regeneration-competent callus from maize leaves
in the dark, (ii) a protocol for inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus
for the generation of stably transformed maize plants. 相似文献
7.
Jafar Mammadov Wei Chen Jennifer Mingus Steve Thompson Siva Kumpatla 《Molecular breeding : new strategies in plant improvement》2012,29(3):779-790
A large number of maize single nucleotide polymorphism (SNP) candidate sequences have been generated and deposited in public
databases. However, very little work has been done to date to comprehensively characterize those SNPs and identify a set of
markers, which potentially would have high impact in molecular genetics research and breeding programs. Here we describe a
multi-step process to identify highly polymorphic gene-based SNPs among ~130,000 public markers. A set of 695 highly polymorphic
SNPs (minor allele frequency value >0.3), identified within exons, 5′ and 3′ untranslated regions of genes, were converted
into four of the most popular high-throughput genotyping assays that include Illumina’s GoldenGate and Infinium chemistries,
Life Technologies’ TaqMan assay and KBioSciences’ KASPar assay. The term “versatile” was applied to 162 gene-based SNPs that
were successfully converted into all four chemistries and had perfect genotypic clustering patterns. This subset of discovered
versatile SNP markers represents a universal tool for application in various molecular genetics and breeding projects in maize,
where genotyping is based on one of the four above-mentioned chemistries. This study demonstrated that despite the availability
of millions of discovered SNPs in maize, only a very small portion of those polymorphisms could be utilized for the development
of robust, versatile assays, and has real practical value in marker-assisted selection. 相似文献
8.
Two original mechanisms of nuclear restitution related to different processes of meiotic division of pollen mother cells (PMCs)
have been found in male meiosis of the lines of maize haploids no. 2903 and no. 2904. The first mechanism, which is characteristic
of haploid no. 2903, consists in spindle deformation (bend) in the conventional metaphase-anaphase I. This leads to asymmetric
incomplete cytokinesis with daughter cell membranes in the form of incisions on the mother cell membrane. As a result, the
chromosomes of the daughter nuclei are combined into a common spindle during the second meiotic division, and a dyad of haploid
microspores is formed at the tetrad stage. The frequency of this abnormality is about 50%. The second restitution mechanism,
which has been observed in PMCs of haploid no. 2904, results from disturbance of the fusion of membrane vesicles (plastosomes)
at the moment of formation of daughter cell membranes and completion of cytokinesis in the first meiotic division. This type
of cell division yields a binuclear monad. In the second meiotic division, the chromosomes of the daughter nuclei form a common
spindle, and meiosis results in a dyad of haploid microspores. The frequency of this abnormality is as high as 15%. As a result,
haploid lines no. 2903 and no. 2904 partly restore fertility. 相似文献
9.
Wu S Yu Z Wang F Li W Ye C Li J Tang J Ding J Zhao J Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine
N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental
special activation elements, and light-induced signal transduction elements, as well as several other structural features
in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic
engineering.
Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633). 相似文献
10.
Jeppe Reitan Andersen Imad Zein Gerhard Wenzel Birte Darnhofer Joachim Eder Milena Ouzunova Thomas Lübberstedt 《BMC plant biology》2008,8(1):2
Background
Forage quality of maize is influenced by both the content and structure of lignins in the cell wall. Biosynthesis of monolignols, constituting the complex structure of lignins, is catalyzed by enzymes in the phenylpropanoid pathway. 相似文献11.
Yang DE Zhang CL Zhang DS Jin DM Weng ML Chen SJ Nguyen H Wang B 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,108(4):706-711
One single pathogen Fusarium graminearum Schw. was inoculated to maize inbred lines 1,145 (Resistant) and Y331 (Susceptive), and their progenies of F1, F2 and BC1F1 populations. Field statistical data revealed that all of the F1 individuals were resistant to the disease and that the ratio of resistant plants to susceptive plants was 3:1 in the F2 population, and 1:1 in the BC1F1 population. The results revealed that a single dominant gene controls the resistance to F. graminearum Schw.. The resistant gene to F. graminearum Schw. was denominated as Rfg1 according to the standard principle of the nomenclature of the plant disease resistant genes. RAPD (randomly amplified polymorphic DNA) combined with BSA (bulked segregant analysis) analysis was carried out in the developed F2 and BC1F1 populations, respectively. Three RAPD products screened from the RAPD analysis with 820 Operon 10-mer primers showed the linkage relation with the resistant gene Rfg1. The three RAPD amplification products (OPD-201000, OPA-041100 and OPY-04900) were cloned and their copy numbers were determined. The results indicated that only OPY-04900 was a single-copy sequence. Then, OPY-04900 was used as a probe to map the Rfg1 gene with a RIL F7 mapping population provided by Henry Nguyen, which was developed from the cross S3×Mo17. Rfg1 was primarily mapped on chromosome 6 between the two linked markers OPY-04900 and umc21 (Bin 6.04–6.05). In order to confirm the primary mapping result, 25 SSR (simple sequence repeat) markers and six RFLP (restriction fragment length polymorphism) markers in the Rfg1 gene-encompassing region were selected, and their linkage relation with Rfg1 was analyzed in our F2 population. Results indicated that SSR marker mmc0241 and RFLP marker bnl3.03 are flanking the Rfg1 gene with a genetic distance of 3.0 cM and 2.0 cM, respectively. This is the first time to name and to map a single resistant gene of maize stalk rot through a single pathogen inoculation and molecular marker analysis.Communicated by H.F. Linskens 相似文献
12.
13.
SIMILAR TO RCD ONE (SRO) is a small plant-specific gene family, which play essential roles in plant growth and development as well as in abiotic stresses. However, the function of SROs in maize is still unknown. In our study, six putative SRO genes were isolated from the maize genome. A systematic analysis was performed to characterize the ZmSRO gene family. The ZmSRO gene family was divided into two groups according to the motif and intron/exon analysis. Phylogenetic analysis of them with other plants showed that the clades of SROs along with the divergence of monocot and dicot and ZmSROs were more closely with OsSROs. Many abiotic stress response and hormone-induced cis-regulatory elements were identified from the promoter region of ZmSROs. Furthermore, RNA-seq analysis indicated that SRO genes were widely expressed in different tissues and development stages in maize, and the expression divergence was also obviously observed. Analyses of expression in response to PEG6000 and NaCl treatment, in addition to exogenous application of ABA and GA hormones showed that the majority of the members display stress-induced expression patterns. Taken together, our results provide valuable reference for further functional analysis of the SRO gene family in maize, especially in abiotic stress responses. 相似文献
14.
Genome-wide mutagenesis of <Emphasis Type="Italic">Zea mays</Emphasis> L. using <Emphasis Type="Italic">RescueMu</Emphasis> transposons 总被引:1,自引:0,他引:1
Derived from the maize Mu1 transposon, RescueMu provides strategies for maize gene discovery and mutant phenotypic analysis. 9.92 Mb of gene-enriched sequences next to RescueMu insertion sites were co-assembled with expressed sequence tags and analyzed. Multiple plasmid recoveries identified probable germinal insertions and screening of RescueMu plasmid libraries identified plants containing probable germinal insertions. Although frequently recovered parental insertions and insertion hotspots reduce the efficiency of gene discovery per plasmid, RescueMu targets a large variety of genes and produces knockout mutants. 相似文献
15.
To better understand the physiological roles of brassinosteroids (BRs) in the primary roots of maize, we examined their effect
on ethylene production. Exogenously applied brassinolide (BL; 10-9 to 10-7 M) incrementally increased the level ethylene in a dose-dependent manner. This BL-induced production was enhanced in the
presence of IAA, thereby implying a synergistic effect between BR and IAA. At 10-7 M BL, the level of free ACC was increased, but that of conjugated ACC was diminished. Moreover, greater concentrations of
BL proportionally increased ACC oxidase activity. In contrast, higher levels of IAA increased the endogenous content of conjugated
ACC as well as ACC synthase activity. Based on these results, we conclude that BR activates ethylene production mainly via
ACC oxidase, and interacts with IAA to produce ethylene. However, the functional site for ethylene production is different
for each hormone. 相似文献
16.
Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05–1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize. 相似文献
17.
18.
High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances
in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without
a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation
efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced
Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation
process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance
the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12%
overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature
embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic
engineering studies including transformation-based functional genomics. 相似文献
19.
Maria Luce Bartucca Silvia Celletti Tanja Mimmo Stefano Cesco Stefania Astolfi Daniele Del Buono 《Acta Physiologiae Plantarum》2017,39(10):235
Many chemicals, including herbicides, are routinely applied to crops for weed management and food production improvement. However, the intensive use of herbicides could lead eventually to a great environmental threat due to their persistence and accumulation in the ecosystems and contamination of soils. Furthermore, the possible effect of these chemicals on nutrient uptake and assimilation in crops has only recently been discussed. The present study aimed at understanding the effect of the herbicide terbuthylazine (TBA), a herbicide commonly applied to control weeds in leguminous species and triazine tolerant crops, on the capability of maize plants to cope with iron (Fe) shortage. The application of 2 and 5 mg L?1 TBA caused a significant reduction of root Fe concentration. This reduction might be attributed to a decreased release of phytosiderophores, which in turn could be ascribed to a reduced sulfur assimilation. Results provide evidence that TBA impairs Fe uptake and accumulation in non-target plants most likely interacting with sulfur-assimilating enzymes [ATP sulfurylase and O-acetylserine(thiol)lyase]. 相似文献
20.
Jones MW Boyd EC Redinbaugh MG 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,123(5):729-740
Genes on chromosomes six (Wsm1), three (Wsm2) and ten (Wsm3) in the maize (Zea mays L.) inbred line Pa405 control resistance to Wheat streak mosaic virus (WSMV), and the same or closely linked genes control resistance to Maize dwarf mosaic virus (MDMV) and Sugarcane mosaic virus (SCMV). Near isogenic lines (NIL) carrying one or two of the genes were developed by introgressing regions of the respective
chromosomes into the susceptible line Oh28 and tested for their responses to WSMV, MDMV, and SCMV in the field and greenhouse.
F1 progeny from NIL × Oh28 were also tested. Wsm1, or closely linked genes, provided resistance to all three viruses, as determined by symptom incidence and severity. Wsm2 and Wsm3 provided resistance to WSMV. Wsm2 and/or Wsm3 provided no resistance to MDMV, but significantly increased resistance in plants with one Wsm1 allele. NIL carrying Wsm1, Wsm2, or Wsm3 had similar SCMV resistance in the field, but NIL with Wsm2 and Wsm3 were not resistant in the greenhouse. Addition of Wsm2 to Wsm1 increased SCMV resistance in the field. For all viruses, symptom incidence was higher in the greenhouse than in the field,
and relative disease severity was higher in the greenhouse for WSMV and MDMV. An Italian MDMV isolate and the Ohio SCMV infected
the Wsm1 NIL, while the Ohio MDMV and Seehausen SCMV isolates did not. Our results indicate that the three genes, or closely linked
loci, provide virus resistance. Resistance conferred by the three genes is influenced by interactions among the genes, the
virus species, the virus isolate, and the environment. 相似文献