首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although effects of potassium (K) on cotton growth have been explored extensively, the effects of K deficiency on the physiological changes closely related to cotton fiber development are lacking. Thus, a 2-year field experiment was conducted with two cotton cultivars (Simian 3 and Siza 3) under 0 kg K2O ha?1 (K deficiency) and 300 kg K2O ha?1 (K sufficiency). The results showed that tonoplast adenosine triphosphatase (V-ATPase), pyrophosphatase (PPase), plasma membrane H+-ATPase (PM H+-ATPase), phosphoenolpyruvate carboxylase (PEPC), sucrose synthesis (SuSy) and vacuolar invertase (V-INV) were highly sensitive to K deficiency. The decreases in those enzymes resulted in low malate and soluble sugar contents, which together with low K concentration declined the driving force for fiber elongation, leading to significantly lower fiber length in the 0 kg K2O ha?1 treatment. The activity of sucrose phosphate synthase (SPS) was obviously increased by K deficiency before 20 days post anthesis (DPA), which could partly explain the acceleration of fiber cellulose synthesis and the increase in fiber strength in the 0 kg K2O ha?1 treatment in the early stage. However, SPS activity was decreased by K deficiency after 20 DPA and SuSy activity was reduced by K deficiency at any sampling date, resulting in low fiber strength in the end. Compared with Simian 3, the enzymes V-ATPase, PPase, PM H+-ATPase, PEPC and SuSy during fiber elongation stage were more sensitive to K deficiency in Siza 3, and the enzymes SuSy and SPS during fiber-thickening stage were more sensitive to K deficiency in Siza 3, which were the important reasons causing greater decreases in final fiber length and final fiber strength for Siza 3 than Simian 3 under K deficiency.  相似文献   

2.
Carbon partitioning to cellulose synthesis   总被引:39,自引:0,他引:39  
This article discusses the importance and implications of regulating carbon partitioning to cellulose synthesis, the characteristics of cells that serve as major sinks for cellulose deposition, and enzymes that participate in the conversion of supplied carbon to cellulose. Cotton fibers, which deposit almost pure cellulose into their secondary cell walls, are referred to as a primary model system. For sucrose synthase, we discuss its proposed role in channeling UDP-Glc to cellulose synthase during secondary wall deposition, its gene family, its manipulation in transgenic plants, and mechanisms that may regulate its association with sites of polysaccharide synthesis. For cellulose synthase, we discuss the organization of the gene family and how protein diversity could relate to control of carbon partitioning to cellulose synthesis. Other enzymes emphasized include UDP-Glc pyrophosphorylase and sucrose phosphate synthase. New data are included on phosphorylation of cotton fiber sucrose synthase, possible regulation by Ca2+ of sucrose synthase localization, electron microscopic immunolocalization of sucrose synthase in cotton fibers, and phylogenetic relationships between cellulose synthase proteins, including three new ones identified in differentiating tracheary elements of Zinnia elegans. We develop a model for metabolism related to cellulose synthesis that implicates the changing intracellular localization of sucrose synthase as a molecular switch between survival metabolism and growth and/or differentiation processes involving cellulose synthesis. Abbreviations: CesA, cellulose synthase; Csl, cellulose-like synthase (genes); DCB, dichlobenil; DPA, days after anthesis; SPS, sucrose phosphate synthase; SuSy, sucrose synthase; P-SuSy, particulate SuSy; S-SuSy, soluble SuSy  相似文献   

3.
Carbohydrate metabolism was investigated during spruce somatic embryogenesis. During the period of maintenance corresponding to the active phase of embryogenic tissue growth, activities of soluble acid invertase and alkaline invertase increased together with cellular glucose and fructose levels. During the same time, sucrose phosphate synthase (SPS) activity increased while sucrose synthase (SuSy) activity stayed constant together with the cellular sucrose level. Therefore, during maintenance, invertases were thought to generate the hexoses necessary for embryogenic tissue growth while SuSy and SPS would allow cellular sucrose to be kept at a constant level. During maturation on sucrose-containing medium, SuSy and SPS activities stayed constant whereas invertase activities were high during the early stage of maturation before declining markedly from the second to the fifth week. This decrease of invertase activities resulted in a decreased hexose:sucrose ratio accompanied by starch and protein deposition. Additionally, carbohydrate metabolism was strongly modified when sucrose in the maturation medium was replaced by equimolar concentrations of glucose and fructose. Essentially, during the first 2 weeks, invertase activities were low in tissues growing on hexose-containing medium while cellular glucose and fructose levels increased. During the same period, SuSy activity increased while the SPS activity stayed constant together with the cellular sucrose level. This metabolism reorganization on hexose-containing medium affected cellular protein and starch levels resulting in a decrease of embryo number and quality. These results provide new knowledge on carbohydrate metabolism during spruce somatic embryogenesis and suggest a regulatory role of exogenous sucrose in embryo development.  相似文献   

4.
Carbohydrates and carbohydrate enzymes in developing cotton ovules   总被引:2,自引:0,他引:2  
Patterns of carbohydrates and carbohydrate enzymes were investigated in developing cotton ovules to establish which of these might be related to sink strength in developing bolls. Enzymatic analysis of extracted tissue indicated that beginning 1 week following anthesis, immature cotton seeds (Gossypium hirsutum L. cv. Coker 100A glandless) accumulated starch in the tissues which surround the embryo. Starting at 15 days post anthesis (DPA), this starch was depleted and starch simultaneously appeared in the embryo. Sucrose entering the tissues surrounding the embryo was rapidly degraded, apparently by sucrose synthase; the free hexose content of these tissues reached a peak at about 20 DPA. During the first few weeks of development these tissues contained substantial amounts of hexose but little sucrose; the reverse was true for cotton embryos. Embryo sucrose content rose sharply from the end of the first week until about 20 DPA; it then remained roughly constant during seed maturation. Galactinol synthase (EC 2.4.1.x) appeared in the embryos approximately 25 days after flowering. Subsequently, starch disappeared and the galactosides raffinose and stachyose appeared in the embryo. Except near maturity, sucrose synthase (EC 2.4.1.13) activity in the embryos predominated over that of both sucrose phosphate synthase (EC 2.4.1.14) and acid invertase (EC 3.2.1.26). Activities of the latter enzymes increased during the final stages of embryo maturation. The ratio of sucrose synthase to sucrose phosphate synthase was found to be high in young cotton embryos but the ratio reversed about 45 DPA, when developing ovules cease being assimilate sinks. Insoluble acid invertase was present in developing cotton embryos, but at very low activities; soluble acid invertase was present at significant activities only in nearly mature embryos. From these data it appears that sucrose synthase plays an important role in young cotton ovule carbohydrate partitioning and that sucrose phosphate synthase and the galactoside synthesizing enzymes assume the dominant roles in carbohydrate partitioning in nearly mature cotton seeds. Starch was found to be an important carbohydrate intermediate during the middle stages of cotton ovule development and raffinose and stachyose were found to be important carbohydrate pools in mature cotton seeds.  相似文献   

5.
The sucrose cleavage by sucrose synthase (SuSy) and neutral invertase was studied in wheat roots (Triticum aestivum L.) subjected to hypoxia or anoxia for 4 days. By in situ activity staining, increased SuSy activity was observed in the tip region and stele of root axes while the activity of invertase decreased. Cellulose content significantly increased in hypoxically treated roots. The cellulose deposition was correlated with regions of high SuSy activity, being mainly located in the pericycle and endodermis. Invertase activity was distributed along the root without clear difference between cortex and stele. Under root hypoxia, a significant increase in the structural carbohydrates, callose and especially cellulose, was shown. Increasing levels of soluble carbohydrates were partially used to synthesize cellulose for secondary wall thickening and callose to counteract the tissue injury following low-oxygen stress. Under strict anoxia, the roots were much more injured but sustained a high level of cellulose and callose while the soluble carbohydrates almost disappeared.  相似文献   

6.
The role of sucrose synthase (SuSy) in tomato fruit was studied in transgenic tomato (Lycopersicon esculentum) plants expressing an antisense fragment of fruit-specific SuSy RNA (TOMSSF) under the control of the cauliflower mosaic virus 35S promoter. Constitutive expression of the antisense RNA markedly inhibited SuSy activity in flowers and fruit pericarp tissues. However, inhibition was only slight in the endosperm and was undetectable in the embryo, shoot, petiole, and leaf tissues. The activity of sucrose phosphate synthase decreased in parallel with that of SuSy, but acid invertase activity did not increase in response to the reduced SuSy activity. The only effect on the carbohydrate content of young fruit was a slight reduction in starch accumulation. The in vitro sucrose import capacity of fruits was not reduced by SuSy inhibition at 23 days after anthesis, and the rate of starch synthesized from the imported sucrose was not lessened even when SuSy activity was decreased by 98%. However, the sucrose unloading capacity of 7-day-old fruit was substantially decreased in lines with low SuSy activity. In addition, the SuSy antisense fruit from the first week of flowering had a slower growth rate. A reduced fruit set, leading to markedly less fruit per plant at maturity, was observed for the plants with the least SuSy activity. These results suggest that SuSy participates in the control of sucrose import capacity of young tomato fruit, which is a determinant for fruit set and development.  相似文献   

7.
Castrillo  M. 《Photosynthetica》2000,36(4):519-524
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition.  相似文献   

8.
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Ahmed  M.  Akhtar  S.  Fanglu  M.  Hasan  M. M.  Shahid  A. A.  Yanang  X.  Sarwar  M. B.  Rao  A. Q.  Husnain  T.  Wang  X. 《Russian Journal of Plant Physiology》2019,66(1):41-49
Russian Journal of Plant Physiology - Cotton (Gossypium hirsutum L.) fiber initiation from ovule epidermal cells happen from 0 to 5 DPA, invertase (INV) and sucrose synthase (SuSy) are...  相似文献   

10.
To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm2, signifying optimum and excessive nitrogen application levels were applied.The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12—24 DPA. In 240 kgN/hm2 condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development.  相似文献   

11.
Sugarcane accumulates high amount of sucrose, thus making it one of the important cash crops worldwide. The final destination of sucrose accumulation in sugarcane is sink tissue, i.e., stalk, supplied by the source, i.e., leaf, to fulfill the need of plant growth, respiration, storage, and other metabolic activities. Signals between sink and source tissues regulate sucrose accumulation in sink and possibly the negative feedback from the sink restrains further accumulation in the stalk. However, perturbation of this negative feedback may help to improve sugar yield. This can be achieved by the application of GA3 (Gibberellic acid), a plant growth regulator, known to excite physiological responses and modify the source–sink metabolism through their effect on photosynthesis, which in turn improves sink strength by redistribution of the photoassimilates. In the present study, GA3 applied canes showed prominent increase in invertase activity, at early stage of the application, to provide hexoses. This in turn helped increase the internodal length and cane capacity for additional accumulation of sucrose, thereby increasing sink strength. At maturity, sucrose% and brix% were found higher in middle and top portions of the GA3-applied canes. Expression analysis of various sucrose metabolising genes viz., sucrose phosphate synthase (SPS), sucrose synthase (SuSy), soluble acid invertase, neutral invertase, and cell wall invertase (CWI) was carried out at different growth stages, using quantitative RT-PCR. CWI, which plays key role in phloem unloading in sink tissues, exhibited higher expression in GA3 samples at the elongation stage which decreased with maturity, whereas both SuSy and SPS, involved in regulation of sucrose accumulation, showed a variable level of expression. Thus, GA3 application on cane may improve the sucrose content in stalk and thus assuage maneuvering source–sink dynamics in sugarcane.  相似文献   

12.
Cotton (Gossypium L.) fiber strength is linked with many complex physiological and biochemical processes in the stage of secondary fiber cell wall thickening. With the aim of further exploiting of the relationship between fiber strength and genotypic differences in physiological characteristics, the experiment was implemented in Nanjing, China (in the lower reach of Yangtze River Valley in China) at the stage of cotton fiber thickening stage in 2004–2005. The result showed that the higher strength fiber (genotype Kemian 1) always had higher activities of sucrose synthetase (SuSy) and β-1,3-glucan synthase, and more sucrose and callose existed and transformed for cellulose synthesis than these of the other genotypes during the fiber secondary wall thickening period These resulted in a longer and more gently cellulose accumulation and wider range and longer period of fiber strength enhancing. Interestingly, the opposite effects were observed in lower strength fiber of Dexiamian 1 and intermediary indices were found in NuCOTN 33B with middle strength fiber. Taken together, above results suggested the variations in the transformation of sucrose and callose contents, and the dynamics of sucrose synthase and β-1,3-glucan synthase activities, might be one of the physiological reasons causing the differences in the speed of cellulose accumulation and fiber strength formation. Additionally, other results showed: (1) the occurrence of callose content peak might be an important sign of the onset of the secondary wall thickening in the fiber cell; (2) the duration and the maximum growth rate of cellulose rapid accumulation contribute more to fiber strength development than other indices of cellulose rapid accumulation.  相似文献   

13.
Developing cotton (Gossypium hirsutum L.) seed exhibits complex patterns of carbon allocation in which incoming sucrose (Suc) is partitioned to three major sinks: the fibers, seed coat, and cotyledons, which synthesize cellulose, starch, and storage proteins or oils, respectively. In this study we investigated the role of Suc synthase (SuSy) in the mobilization of Suc into such sinks. Assessments of SuSy gene expression at various levels led to the surprising conclusion that, in contrast to that found for other plants, SuSy does not appear to play a role in starch synthesis in the cotton seed. However, our demonstration of functional symplastic connections between the phloem-unloading area and the fiber cells, as well as the SuSy expression pattern in fibers, indicates a major role of SuSy in partitioning carbon to fiber cellulose synthesis. SuSy expression is also high in transfer cells of the seed coat facing the cotyledons. Such high levels of SuSy could contribute to the synthesis of the thickened cell walls and to the energy generation for Suc efflux to the seed apoplast. The expression of SuSy in cotyledons also suggests a role in protein and lipid synthesis. In summary, the developing cotton seed provides an excellent example of the diverse roles played by SuSy in carbon metabolism.  相似文献   

14.
Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V max SPS activity in leaf and fiber. Lines with the highest V max SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of 14C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO2 concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.  相似文献   

15.
以温度弱敏感性棉花品种(科棉1号)和温度敏感性棉花品种(苏棉15)为材料,在人工气候室模拟自然温周期设置高温(34 ℃\[38/30 ℃\],HT)和对照(26 ℃\[30/22 ℃\],CK)2个温度处理,研究了花铃期不同时段进行高温胁迫后纤维发育重要相关物质的变化及其与纤维品质的关系.结果表明: 在花后不同时间开始高温胁迫持续处理5 d,苏棉15纤维长度、纤维比强度、马克隆值响应高温胁迫的关键时间窗口分别为花后0~18.3 d,花后10.9~26.1 d和花后10.5~34.0 d.因此,花后11~18 d左右是棉花综合纤维品质形成响应高温胁迫的关键时间窗口.在关键时间窗口对棉花进行高温处理5 d后,苏棉15纤维中的蔗糖含量相对常温条件下呈先降低后增加的变化趋势,胼胝质含量上升,纤维素含量下降4.2%,纤维长度变短(最大变幅为23.3%),纤维比强度上升(最大变幅为4.3%),马克隆值下降(最大变幅为10.5%)并偏离最适范围,纤维品质变差.科棉1号的上述纤维发育主要相关物质含量及纤维品质与苏棉15变化趋势一致、最敏感时间相近,仅变化幅度相对较小.  相似文献   

16.
Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.  相似文献   

17.
18.
Albrecht G  Mustroph A 《Planta》2003,217(2):252-260
Sucrose synthase (SuSy; EC 2.4.1.13) plays a prominent role in O(2) deficiency and functions at a branch point, partitioning sucrose between cell wall biosynthesis and glycolysis. The cleavage of sucrose by SuSy was localized in wheat ( Triticum aestivum L. cv. Alcedo) roots subjected to 4 days of hypoxia. Increased SuSy activity was observed by in situ activity staining in the tip region and in the stele of root axes. The pattern of cellulose deposition correlated with regions of high SuSy activity. Cellulose accounted for more than 30% of root dry weight and the cellulose content increased substantially under hypoxia. The strongest accumulation of cellulose occurred in the base and mid-regions of the roots where the content rose to 163% and 182% of controls, respectively. In the root axis, cellulose deposition occurred in the endodermis and walls of pith cells. In root tips, cellulose was primarily deposited in developing xylem and phloem. The marker enzyme for O(2) shortage, pyruvate decarboxylase (EC 4.1.1.17), exhibited a 14-fold increase in the root apex, whereas in basal root tissues, which contained more aerenchyma, pyruvate decarboxylase activity was only doubled. The root apex also contained the highest concentration of sucrose and hexoses. The elevated sugar content in all root zones was partially used to synthesize cellulose for secondary wall thickening.  相似文献   

19.
20.
Sucrose, glucose and fructose concentrations, and sucrolytic enzyme activities were measured in the developing shoots and internodes of sprouting sugarcane setts (Saccharum spp, variety N19). The most striking change during the sink-source transition of the internode and germination of the axillary bud is a more than five-fold induction of cell wall invertase in the germinating bud. In contrast, soluble acid invertase is the main sucrose hydrolytic activity induced in the internodal tissue. A cycle of breakdown and synthesis of sucrose was evident in both the internodes and the shoots. During shoot establishment, the sucrose content decreased and the hexose content increased in the internodal tissues while both sucrose and hexoses continuously accumulated in the shoots. Over the sprouting period internode, dry mass was reduced by 25 and 30 % in plants incubated in a dark/light cycle or total darkness, respectively. Sucrose accounted for 90 % of the dry mass loss. The most significant changes in SuSy activity are in the synthesis direction in the shoots resulting in a decrease in the breakdown/synthesis ratio. In contrast the SuSy activity in the internodal tissue decrease and more so in the synthesis activity resulting in an increase in the breakdown to synthesis ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号