首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The best known silicon (Si)-accumulating plant, rice (Oryza sativa L.), stores most of its Si in leaves, but the importance of Si has been limited to a mechanical role. Our initial studies showed that Si-induced cadmium (Cd) tolerance is mediated by the enhancement of instantaneous water-use-efficiency, carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO), and light-use-efficiency in leaves of rice plants. In this study, we investigated changes in the rice leaf proteome in order to identify molecular mechanisms involved in Si-induced Cd tolerance. Our study identified 60 protein spots that were differentially regulated due to Cd and/or Si treatments. Among them, 50 were significantly regulated by Si, including proteins associated with photosynthesis, redox homeostasis, regulation/protein synthesis, pathogen response and chaperone activity. Interestingly, we observed a Si-induced up-regulation of a class III peroxidase and a thaumatin-like protein irrespective of Cd treatment, in addition to a Cd-induced up-regulation of protein disulfide isomerase, a HSP70 homologue, a NADH-ubiquinone oxidoreductase, and a putative phosphogluconate dehydrogenase, especially in the presence of Si. Taken together, our study sheds light on molecular mechanisms involved in Si-induced Cd tolerance in rice leaves and suggests a more active involvement of Si in plant physiological processes than previously proposed.  相似文献   

2.
Drought is a major abiotic stress factor limiting rice production in rainfed areas. In this study we identified a large-effect quantitative trait locus (QTL) associated with grain yield under stress in five different populations on chromosome 1. The effect of this QTL was further confirmed and characterized in five backcross populations in a total of sixteen stress and non-stress trials during 2006 and 2008. In all the stress trials (eight in total) qDTY1.1 showed strong association with grain yield explaining on average 58% of the genetic variation in the trait. Homozygotes for the tolerant parent allele (Apo) yielded on average 27% more than the susceptible parent allele (IR64) homozygotes. Using an Apo/3*IR64 population, the peak of this QTL (qDTY1.1) was mapped to an interval between RM486 and RM472 at 162.8?cM at a LOD score of 9.26. qDTY1.1 was strongly associated with plant height in all the environments; this was probably due to the presence of the sd1 locus in this genomic region. In a Vandana/3*IR64 population segregating for sd1, a strong relation between plant height and yield under stress was observed. The observed relation between increased height and drought tolerance is likely due to tight linkage between qDTY1.1 and sd1 and not due to pleiotrophy of sd1. Thus there is a possibility of combining reduced plant height and drought tolerance in rice. The large and consistent effect of qDTY1.1 across several genetic backgrounds and environments makes it a potential strong candidate for use in molecular breeding of rice for drought tolerance.  相似文献   

3.
4.
Identifying and exploiting grain yield genes in rice   总被引:7,自引:0,他引:7  
Improved grain yield has been a major focus of crop breeding programs around the world. With the accomplishments of the Rice Genome Project, genes regulating several agronomically important traits related to grain yield, such as tiller number, grain number, grain size, and plant height, have recently been identified. Although these findings have not been enough to fully characterize the mechanisms that regulate each trait, these genes and knowledge of the molecular mechanisms involved provide a set of tools that can be combined to achieve tailor-made breeding suitable for various programs aimed at higher grain yield.  相似文献   

5.
Sensitivity to azoxystrobin and kresoxim‐methyl of 80 single‐spore isolates of Magnaporthe oryzae was determined. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting mycelial growth of the 80 M. oryzae isolates were 0.006–0.056 and 0.024–0.287 µg mL?1, respectively. The EC50 values for azoxystrobin and kresoxim‐methyl in inhibiting conidial germination of the M. oryzae populations were 0.004–0.051 and 0.012–0.105 µg mL?1, respectively. There was significant difference in sensitivity to azoxystrobin or kresoxim‐methyl between the tested isolates representing differential sensitivity to carbendazim (MBC) and kitazin P (IBP); however, there was no correlation between this difference in sensitivity to azoxystrobin or kresoxim‐methyl and sensitivity to MBC or IBP, indicating that there was no cross‐resistance between azoxystrobin or kresoxim‐methyl and MBC or IBP. In the protective and curative experiments, kresoxim‐methyl exhibited higher protective and curative activity than azoxystrobin when applied at 150 and 250 µg mL?1 accordingly, while azoxystrobin exhibited stronger inhibitory activity against M. oryzae isolates than that of kresoxim‐methyl in the in vitro test. The results of field experiments also suggested that both azoxystrobin and kresoxim‐methyl at 187.5 g.a.i. ha?1 gave over 73% control efficacy in both sites, exhibiting excellent activity against rice blast. Taken together, azoxystrobin and kresoxim‐methyl could be a good substitute for MBC or IBP for controlling rice blast in China, but should be carefully used as they were both at‐risk.  相似文献   

6.
Summary Of the three growth stagesviz., seedling establishment, maximum tillering and flowering, complete submergence of plant at flowering stage was found to be most critical followed by seedling estabilishment and maximum tillering stages. Among the three stages of reproductive growth phase, booting stage was found to be most susceptible to complete submergence followed by flowering and post-flowering. The submergence at booting for 4 days was equally detrimental as that of 6 or 8 days at flowering. Irrespective of the growth stages, the plants subjected to complete submergence showed higher nitrogen content (in plant as well as in grain) as compared to those grown under control conditions (5±2 cm) and increased with the increase in duration of submergence. The P and K contents in the plant decreased under submergence.  相似文献   

7.
结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响   总被引:11,自引:2,他引:11  
以生产上广泛使用的3个水稻品种为材料,研究了结实期适度水分胁迫对不同氮肥水平下稻米产量及其品质的影响.结果表明,正常施氮水平下,水分胁迫使3个品种籽粒产量降低11.6%~14.7%,虽整精米率有所提高,但垩白度却显著增加(18.7%~33.1%),外观品质变劣;而高氮水平下,水分胁迫处理的产量增加18.8%~22.2%,垩白粒率和垩白度分别降低15.3%~37.2%和13.7%~29.9%,外观品质变优.稻米RVA谱特征值和米饭质地也明显受到结实期土壤水分和施氮水平的影响.正常施氮水平下,水分胁迫处理的最高粘度和崩解值(扬稻6号除外)要低于水层灌溉处理,而其消减值却明显高于水层灌溉处理,水分胁迫使得正常施氮处理的米饭口感较硬,弹性较差,粘性降低,且咀嚼有渣感.而高氮水平下,水分胁迫利于米粉糊化过程中早期粘度的上升,最高粘度增加,崩解值也明显高于水层灌溉,消减值却明显减小,米饭的硬性和凝聚性减小,松弛性和粘附性增大,米饭质地有变优的趋势.  相似文献   

8.
The effect of Leptocorisa oratorius (F.) on the yield, grain quality, and seed viability of four rice, Oryza sativa L., lines was studied. Three of the lines, C2, IR64, and PSBRc20, are grown in the Philippines. The fourth, IR72164-201-1 is an unreleased experimental line of an O. sativa japonica x O. sativa indica cross. Each line was exposed to four infestation densities for 21 d. L. oratorius feeding produced unfilled and partially filled grains, resulting in a negative correlation of yield to rice bug density. When filled grains were sown, germination rates were negatively correlated with rice bug densities. The percentage of discolored grains was positively correlated with L. oratorius density on all rice lines. At the same infestation rates, PSBRc20 and IR64 had higher yields, less damaged grain, and higher germination rates than IR72164-201-1 and C2, suggesting host plant tolerance to rice bug feeding. The economic injury levels (EILs) currently used for rice bug management are based solely on yield loss estimates. The results of this study suggest that EIL for rice bugs should be revised to take into account reductions in grain quality and seed germination rates in addition to yield loss.  相似文献   

9.
10.
Drought is the major environmental factor limiting crop productivity worldwide. We hypothesized that it is possible to enhance drought tolerance by delaying stress-induced senescence through the stress-induced synthesis of cytokinins in crop-plants. We generated transgenic rice (Oryza sativa) plants expressing an isopentenyltransferase (IPT) gene driven by P(SARK) , a stress- and maturation-induced promoter. Plants were tested for drought tolerance at two yield-sensitive developmental stages: pre- and post-anthesis. Under both treatments, the transgenic rice plants exhibited delayed response to stress with significantly higher grain yield (GY) when compared to wild-type plants. Gene expression analysis revealed a significant shift in expression of hormone-associated genes in the transgenic plants. During water-stress (WS), P(SARK)::IPT plants displayed increased expression of brassinosteroid-related genes and repression of jasmonate-related genes. Changes in hormone homeostasis were associated with resource(s) mobilization during stress. The transgenic plants displayed differential expression of genes encoding enzymes associated with hormone synthesis and hormone-regulated pathways. These changes and associated hormonal crosstalk resulted in the modification of source/sink relationships and a stronger sink capacity of the P(SARK)::IPT plants during WS. As a result, the transgenic plants had higher GY with improved quality (nutrients and starch content).  相似文献   

11.
Summary and conclusion One of the common causes of the death of the lower leaves in the tropics is a deficiency in light energy. The death of leaves from light deficiency results from the weakening of the leaves as a result of a decrease in their photosynthetic capacity, poor retention of nutrients, and decomposition of proteins which results in ammonia accumulation.Rice yields decrease under mutually shaded conditions. The removal of the lower leaves is less harmful than shading them. This indicates that their death under mutually shaded conditions may be advantageous. It is obvious, however, that the use of genetic materials or cultural practices which would allow the lower leaves to function normally until the plant approaches maturity would be highly desirable. Such materials and procedures would clearly involve reduced leafiness and the harmful effects of mutual shading.A portion of the master's thesis of S. A. Navasero submitted to the Graduate School, University of the Philippines.  相似文献   

12.
13.
播栽期对水稻产量和产量构成因素及生育期的影响   总被引:43,自引:0,他引:43  
研究了不同播栽期对水稻产量和产量构成因素及生育期的影响。结果表明 ,随播栽期推迟 ,水稻产量有所降低。每穗成粒数减少是推迟播栽期引起水稻减产的主要原因 ,其次是千粒重的下降和成穗数的降低。针对目前的生产实际 ,提出了一些应对播栽期推迟的技术措施。  相似文献   

14.
Reduction of grain yield (total seed weight) by ozone in rice (Oryza sativa L.) is believed to be caused by ozone-induced reduction of photosynthetic activity followed by growth inhibition. Here, japonica rice cultivar Sasanishiki and indica rice cultivar Habataki showed different responses to ozone. When exposed to ozone, the leaves of Habataki exhibited no critical damage, whereas those of Sasanishiki developed lesions. Conversely, ozone exposure reduced total seed weight by 19% in Habataki, but not significantly in Sasanishiki. Chronic ozone exposure also significantly decreased culm length, number of primary rachis branch, and number of spikelets per panicle in Habataki. QTL analysis in Sasanishiki/Habataki chromosome segment substitution lines identified a single locus associated with the yield loss caused by ozone on chromosome 6 of Habataki close to marker RM3430 (107.6 cM). A QTL for reduction of primary rachis branch number and total spikelet number was found in the same position. These results indicate that a QTL on chromosome 6 has an important role in ozone-induced yield loss, and is also involved in primary rachis branch formation and total spikelet number in ozone-exposed rice.  相似文献   

15.
灌浆结实期温度对水稻产量和品质形成的影响   总被引:14,自引:0,他引:14  
灌浆结实期是水稻产量和品质形成的关键时期,该时期温度对水稻籽粒灌浆具有显著的影响.随着全球气候趋暖以及极端天气频发,温度胁迫下籽粒灌浆和稻米品质的响应特征及其生理生化机制是目前稻作研究的热点之一.本文以灌浆结实期温度为切入点,对水稻产量和品质形成的适宜温度与温度影响时段以及温度胁迫下水稻生理生化特征等方面进行了梳理.灌浆初期(齐穗后20 d)是温度影响水稻产量和品质形成的关键时期,适温(21 ~ 26℃)有利于水稻灌浆和淀粉的充实与沉积,过高或过低温度均不利于提高水稻产量和品质.温度胁迫下,水稻生理生化活性下降,光合功能降低,抗逆性减弱,干物质积累和运转受抑,从而造成产量下降及品质变劣.这些可能为水稻优质高产栽培和灌浆结实期温度研究提供一定的参考.  相似文献   

16.
臭氧胁迫下硅对大豆抗氧化系统、生物量及产量的影响   总被引:1,自引:0,他引:1  
在全球变化情景下,臭氧污染对作物产量将造成严重影响,臭氧将成为未来农业重要胁迫因素。研究缓解臭氧胁迫技术措施有利于保障粮食安全,其中硅元素添加可能是有效途径之一。利用开顶式同化箱(open top chambers,OTCs)装置,设置两个O3浓度(大气O3浓度<40μg/kg和高O3浓度约为80μg/kg)、两个硅浓度(0和100μg/g),研究不同O3浓度下硅对开花后大豆(Glycine max)株高、叶面积、叶绿素含量、抗氧化系统及产量的影响。结果表明:在无臭氧胁迫下,施硅可显著提高大豆根生物量、总生物量和单株籽粒重(14%、5%和20%)(P<0.05)。在O3胁迫下,施硅能使大豆维持较高的叶面积,显著提高大豆叶片叶绿素含量及SOD、POD、CAT活性,显著降低MDA含量,提高大豆根生物量、地上部生物量、总生物量、根冠比和单株籽粒重(29%,18%,19%,9%和17%)(P<0.05)。研究可为缓解O3对大豆危害提供合理可行的栽培管理措施与理论依据。  相似文献   

17.
Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over‐expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole‐3‐acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker‐assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high‐yielding rice varieties.  相似文献   

18.
Grain number is an important agronomic trait. We investigated the roles of chromatin interacting factor Oryza sativa VIN3‐LIKE 2 (OsVIL2), which controls plant biomass and yield in rice. Mutations in OsVIL2 led to shorter plants and fewer grains whereas its overexpression (OX) enhanced biomass production and grain numbers when compared with the wild type. RNA‐sequencing analyses revealed that 1958 genes were up‐regulated and 2096 genes were down‐regulated in the region of active division within the first internodes of OX plants. Chromatin immunoprecipitation analysis showed that, among the downregulated genes, OsVIL2 was directly associated with chromatins in the promoter region of CYTOKININ OXIDASE/DEHYDROGENASE2 (OsCKX2), a gene responsible for cytokinin degradation. Likewise, active cytokinin levels were increased in the OX plants. We conclude that OsVIL2 improves the production of biomass and grain by suppressing OsCKX2 chromatin.  相似文献   

19.
以中浙优1号为材料、秸秆不还田为对照,在大田试验条件下研究了不同秸秆还田量(4000、6000、8000 kg·hm-2)对水稻群体干物质积累、运转、植株固碳及产量形成的影响. 结果表明: 与对照相比,秸秆还田处理的水稻群体干物质积累总量平均增加63.03 g·m-2,以6000 kg·hm-2处理的干物质积累量最高,比对照增加154.40 g·m-2;在水稻各生育阶段中,秸秆还田处理对分蘖盛期—齐穗期干物质积累的影响最为明显,干物质积累量比对照平均增加71.25 g·m-2;与对照相比,秸秆还田处理的茎叶干物质输出率和表观转变率分别平均增加4.2%和3.7%,均以6000 kg·hm-2处理最高,分别为12.8%和11.1%.秸秆还田处理的群体植株固碳量比对照平均增加55.38 g·m-2,以6000 kg·hm-2处理的增幅最大,为17.8%;从固碳量在各器官中的分配来看,秸秆还田有利于生育前期茎叶固碳量的积累和生育后期固碳量向穗部的分配.秸秆还田处理的水稻产量比对照平均增加794.59 kg·hm-2,增幅9.5%,其中6000和4000 kg·hm-2处理的产量均显著提高,而8000 kg·hm-2处理的产量增加不显著;从产量构成因素来看,秸秆还田处理单位面积有效穗数的增加是增产的主要原因,平均增加8.4穗·m-2.  相似文献   

20.
不同土壤水分处理对水稻光合特性及产量的影响   总被引:7,自引:0,他引:7  
王唯逍  刘小军  田永超  姚霞  曹卫星  朱艳 《生态学报》2012,32(22):7053-7060
为探明土壤水分对水稻生长发育的影响机理,以武香粳14和两优培九为试验材料,分析了不同土壤水分处理下(W1、W2、W3和CK分别表示土壤体积含水量为20%、30%、40%和5cm水层灌溉)的水稻光合特性、产量及水分生产率等。结果表明,轻度水分胁迫(W3)具有处理间最大的叶片气孔导度、蒸腾速率和净光合速率,其他处理规律不显著。灌浆初期各水分处理下叶位间光合指标均表现为:剑叶>顶2叶>顶3叶>顶4叶,其他生育期规律不显著。与对照处理(CK)相比,武香粳14的W1、W2和W3处理的产量分别减少61.14%和29.13%、增加0.96%,水分生产率分别减少10.69%、增加1.53%和20.61%;两优培九的产量分别减少64.11%和28.76%,增加2.08%,水分生产率分别减少16.39%,增加2.46%和22.13%。研究结果为水稻精确灌溉和节水生产提供了技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号