首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Poly(amidoamine)s (PAAs) are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine) hydrogel film incorporating 4-aminobutylguanidine (agmatine) moieties to create RGD-mimicking repeating units for promoting cell adhesion.  相似文献   

2.
Pasupathy K  Lin S  Hu Q  Luo H  Ke PC 《Biotechnology journal》2008,3(8):1078-1082
Plant gene delivery is challenging due to the presence of plant cell walls. Conventional means such as Agrobacterium infection, biolistic particle bombardment, electroporation, or polyethylene glycol attachment are often characterized by high cost, labor extensiveness, and a significant perturbation to the growth of cells. We have succeeded in delivering GFP-encoding plasmid DNA to turfgrass cells using poly(amidoamine) dendrimers. Our new scheme utilizes the physiochemical properties as well as the nanosize of the poly(amidoamine) dendrimer for direct and noninvasive gene delivery. The GFP gene was expressed in the plant cells as observed by confocal fluorescence microscopy. The transfection efficiency may be further improved by optimizing the pH of the cell culture medium and the molar ratio of the dendrimer to DNA. The use of the current delivery system can be extended to virtually all plant species having successful regeneration systems in place.  相似文献   

3.
PEGylated polyamidoamine (PAA) polymers were investigated for the production of sterically stabilised DNA delivery systems. Comparison of a PEGylated polymer (NG47) with a non-PEGylated polymer (NG49) showed similar binding of co-polymer to DNA by displacement of ethidium bromide (EB) and DNA melting studies. Gel electrophoresis, turbidimetric analysis and PCS demonstrated differences in the colloidal properties of the complexes, which were attributable to the formation of soluble complexes by the PEGylated co-polymer. However, transmission electron microscopy (TEM) showed that the resulting complexes containing poly(ethylene glycol) (PEG) were not well condensed, susceptible to degradation by nucleases, and thus not suited for in vivo delivery. The poor properties of the PEGylated co-polymer were attributed to an excess of PEG. However, polymer blends of NG47 and NG49 at defined ratios of polymer to co-polymer and total repeating units (RUs) to nucleotide, spontaneously formed complexes with a range of desirable properties. These included small size and polydispersity, high particle density, low surface charge and resistance to nuclease degradation. Complexes made with PEGylated polymer alone, and the polymer blends both suffered from a reduced polyfection activity. This was attributed to a low surface charge on the complex, which reduced interactions with the cell membrane and consequent uptake of the particles into the cell.  相似文献   

4.
Polyplexes of high stability resulting from the condensation of a plasmid DNA by a cationic polymer are widely used to develop polymer-based gene delivery systems. However, the plasmid must be released from its vector once inside the cells for an efficient expression of the exogenous gene in the cell nucleus. We have designed a disulfide-containing cationic polymer termed poly[Lys-(AEDTP)] which allowed for the formation of polyplexes and the release of the plasmid in a reductive medium. The amino groups of polylysine were substituted with 3-(2-aminoethyldithio)propionyl residues in order to have each amino group of poly[Lys-(AEDTP)] interacting with a phosphate DNA linked to the polymer backbone via a disulfide bond. As evidenced by agarose gel electrophoresis and ethidium bromide/pDNA fluorescence restoration, poly[Lys-(AEDTP)] polyplexes were decondensed and the plasmid released upon treatment with either dithiothreitol, glutathione in the presence of glutathione reductase, or the thioredoxin reductase. Electron microscopy showed that polyplexes exhibiting spherical particles of a mean size at about 100 nm were decondensed in the presence of glutathione and exhibited filamentous aggregates. Finally, we found that the transfection of 293T7 and HepG2 cells was 10- and 50-fold more efficient with poly[Lys-(AEDTP)] polyplexes, respectively, than with poly[Lys] polyplexes. These results indicate that disulfide-containing cationic polymers must be borne in mind for developing polymer-base gene delivery systems.  相似文献   

5.
Overcoming the barriers to efficient gene transfer is a fundamental goal of biotechnology. A versatile approach to enhance the delivery of nonviral DNA involves complexation with cationic polymers, which can be designed to overcome the barriers to effective gene transfer. More recently, DNA release from a polymer substrate or scaffold has been shown to enhance gene transfer, likely by increasing DNA concentrations in the cell microenvironment. We propose a novel approach that combines these two strategies in which cationic polymer/DNA complexes are tethered to a substrate that supports cell adhesion. The cationic polymers package the DNA for efficient internalization and the surface tethering functions to maintain elevated concentrations in the cell microenvironment for cells adhered to the substrate. The cationic polymer polylysine (degree of polymerization equal to 19 or 150) was modified with biotin groups, which was confirmed by mass spectrometry and biochemical analysis. Complex formation of DNA with biotinylated-polylysine, or mixtures of biotinylated and nonbiotinylated polylysines, was confirmed by gel electrophoresis. Plasmid DNA encoding for the reporter gene beta-galactosidase was complexed with different mixtures of biotinylated and nonbiotinylated polylysine and incubated on neutravidin (nonglycosylated avidin)-coated surfaces. DNA surface densities ranging from 0.1 to 4.3 microg/cm2 were observed and found to be a function of the number of biotin groups, the molecular weight of the polylysine, and the amount of DNA. HEK293T or NIH/3T3 cells were then seeded onto the DNA-modified surfaces, and transfection was quantified at 48 and 96 h. Transfection by the DNA surfaces was observed with both cell lines, and expression levels up to 100 fold greater than bulk delivery of the complexes was obtained. Transfection was found to be a function of the surface DNA quantities and the number of tethers on the complex. Transfected cells were observed only in the region in which DNA complexes were tethered, suggesting that the location of transfected cells can be specifically controlled. Surface tethering of DNA represents a promising approach to enhancing gene transfer and spatially controlling gene delivery, which may have applications to a multitude of fields ranging from tissue engineering to functional genomics.  相似文献   

6.
Dendronized chitosan derivative as a biocompatible gene delivery carrier   总被引:1,自引:0,他引:1  
Deng J  Zhou Y  Xu B  Mai K  Deng Y  Zhang LM 《Biomacromolecules》2011,12(3):642-649
To improve the transfection efficiency of chitosan as a nonviral gene delivery vector, a dendronized chitosan derivative was prepared by a copper-catalyzed azide alkyne cyclization reaction of propargyl focal point poly(amidoamine) dendron with 6-azido-6-deoxy-chitosan. Its structure was characterized by (1)H NMR and FTIR analyses and its buffering capacity was evaluated by acid-base titration. In particular, its complexation with plasmid DNA was investigated by agarose gel electrophoresis, zeta potential, and particle size analyses as well as transmission electron microscopy observation. Compared to unmodified chitosan, such a chitosan derivative has better water solubility and buffering capacity. Compared to commonly used polyethyleneimine (PEI, 25 kDa), it could exhibit enhanced transfection efficiency in some cases and lower cell toxicity, as confirmed by in vitro transfection and cytotoxicity tests in human kidney 293T and human nasopharyngeal carcinoma CNE2 cell lines. In addition, the effect of serum on its transfection efficiency was also studied.  相似文献   

7.
Novel biodegradable poly(disulfide amine)s with defined structure, high transfection efficiency, and low cytotoxicity were designed and synthesized as nonviral gene delivery carriers. Michael addition between N, N'-cystaminebisacrylamide (CBA) and three N-Boc protected diamines ( N-Boc-1,2-diaminoethane, N-Boc-1,4-diaminobutane, and N-Boc-1,6-diaminohexane) followed by N-Boc deprotection under acidic condition resulted in final cationic polymers with disulfide bonds, tertiary amine groups in main chains, and pendant primary amine groups in side chains. Polymer structures were confirmed by 1H NMR, and their molecular weights were in the range 3.3-4.7 kDa with narrow polydispersity (1.12-1.17) as determined by size exclusion chromatography (SEC). Acid-base titration assay showed that the poly(disulfide amine)s possessed superior buffering capacity to branched PEI 25 kDa in the pH range 7.4-5.1, which may facilitate the escape of DNA from the endosomal compartment. Gel retardation assay demonstrated that significant polyplex dissociation was observed in the presence of 5.0 mM DTT within 1 h, suggesting rapid DNA release in the reduction condition such as cytoplasm due to the cleavage of disulfide bonds. Genetic transfections mediated by these poly(disulfide amine)s were side-chain spacer length dependent. The poly(disulfide amine) with a hexaethylene spacer, poly(CBA-DAH), had comparable transfection efficiency to bPEI 25 kDa in the tested cell lines, i.e., 293T cells, Hela cells, and NIH3T3 cells. This same poly(disulfide amine) mediated 7-fold higher luciferase expression than bPEI 25 kDa in C2C12 cells (mouse myoblast cell line), a cell line difficult to transfect with many cationic polymers. Furthermore, MTT assay indicated that all three poly(disulfide amine)s/pDNA polyplexes were significantly less toxic than bPEI/pDNA complexes.  相似文献   

8.
Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand, displayed high DNA binding efficiency and pH-sensitive release.  相似文献   

9.
Some (1,3')-bis-tetrahydroisoquinolines were reported as scaffold intermediates for the synthesis of pentacyclic piperazine core alkaloids and their cytotoxicity against cancerous cell lines was evaluated. The NMR and X-ray structural assignments revealed an anti C3-C11 backbone stereochemistry of piperazine structures. Inhibition of cancer cell proliferation of (1,3')-bis-tetrahydroisoquinoline scaffolds and pentacyclic piperazine systems was assessed against three human cancer cell lines (K562 myelogenous leukemia, A549 lung carcinoma, MCF-7 breast adenocarcinoma) and both mouse tumor cell lines of blood (P388) and lymphocytic (L1210) leukemia with considerable activity against the latter. The cell cycle analysis was also studied by flow cytometry measurement on K562 cell line.  相似文献   

10.
The controlled release of siRNA or DNA complexes from cationic polymers is an important parameter design in polymer-based delivery carriers. In this work, we use the self-catalyzed degradable poly(2-dimethylaminoethyl acrylate) (PDMAEA) to strongly bind, protect, and then release oligo DNA (a mimic for siRNA) without the need for a cellular or external trigger. This self-catalyzed hydrolysis process of PDMAEA forms poly(acrylic acid) and N,N'-dimethylamino ethyl ethanol, both of which have little or no toxicity to cells, and offers the advantage of little or no toxicity to off-target cells and tissues. We found that PDMAEA makes an ideal component of a delivery carrier by protecting the oligo DNA for a sufficiently long period of time to transfect most cells (80% transfection after 4 h) and then has the capacity to release the DNA inside the cells after ~10 h. The PDMAEA formed large nanoparticle complexes with oligo DNA of ~400 nm that protected the oligo DNA from DNase in serum. The nanoparticle complexes showed no toxicity for all molecular weights at a nitrogen/phosphorus (N/P) ratio of 10. Only the higher molecular weight polymers at very high N/P ratios of 200 showed significant levels of cytotoxicity. These attributes make PDMAEA a promising candidate as a component in the design of a gene delivery carrier without the concern about accumulated toxicity of nanoparticles in the human body after multiadministration, an issue that has become increasingly more important.  相似文献   

11.
Water-soluble, degradable polymers based on poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) with low cytotoxicity and good p-DNA transfection efficiency are highlighted in this article. To solve the nondegradability issue of PDMAEMA, new polymers based on DMAEMA and 5,6-benzo-2-methylene-1,3-dioxepane (BMDO) for gene transfection were synthesized. A poly(ethylene oxide) (PEO) azo-initiator was used as free-radical initiator. PEGylation was performed to improve water solubility and to reduce cytotoxicity of the polymers. The resulting polymers contain hydrolyzable ester linkages in the backbone and were soluble in water even with very high amounts of ester linkages. These degradable copolymers showed significantly less toxicity with a MTT assay using L929 cell lines and demonstrated promising DNA transfection efficiency when compared with the gold standard poly(ethyleneimine). Bioresponsive properties of the corresponding quaternized DMAEMA based degradable polymers were also studied. Although the quaternized DMAEMA copolymers showed enhanced water solubility, they were inferior in gene transfection and toxicity as compared to the unquaternized copolymers.  相似文献   

12.
Although bioactive polymers such as cationic polymers have demonstrated potential as drug carriers and nonviral gene delivery vectors, high toxicity and uncontrolled, instantaneous cellular interactions of those vectors have hindered the successful implementation In Vivo. Fine control over the cellular interactions of a potential drug/gene delivery vector would be thus desirable. Herein, we have designed nanohybrid systems (100-150 nm in diameter) that combine the polycations with protective outer layers consisting of biodegradable polymeric nanoparticles (NPs) or liposomes. A commonly used polycation polyethylenimine (PEI) was employed after conjugation with rhodamine (RITC). The PEI-RITC conjugates were then encapsulated into (i) polymeric NPs made of either poly(lactide-co-glycolide) (PLGA) or poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-PLGA); or (ii) PEGylated liposomes, resulting in three nanohybrid systems. Through the nanohybridization, both cellular uptake and cytotoxicity of the nanohybrids were kinetically controlled. The cytotoxicity assay using MCF-7 cells revealed that liposome-based nanohybrids exhibited the least toxicity, followed by PEG-PLGA- and PLGA-based NPs after 24 h incubation. The different kinetics of cellular uptake was also observed, the liposome-based systems being the fastest and PLGA-based systems being the slowest. The results present a potential delivery platform with enhanced control over its biological interaction kinetics and passive targeting capability through size control.  相似文献   

13.
DNA delivery systems for gene therapy applications have to be able to trigger the uptake of plasmid DNA into the nucleus. We have tested two types of non-viral vector systems, lipofection (cationic lipid-based, using Lipofectamine) and polyfection (cationic polymer-based, using glycerol enhanced transferrinfection), for their ability to transfect confluent, contact inhibited primary human fibroblasts. While both systems worked well with growing fibroblasts, polyfection was superior with confluent cells. A slight reduction in cell associated plasmid DNA was observed with resting cells, but it was similar for both types of complexes. Lipofectamine showed a prevalence for transfecting cycling cells as judged by costaining transfected cells with cell cycle markers. No such bias was observed when glycerol enhanced transferrinfection was used. Microinjection of plasmid DNA/polylysine complexes into the cytoplasm of fibroblasts resulted in a higher percentage of expressing cells than injection of plasmid DNA, offering an explanation for the higher transfection levels obtained with transferrinfection in non-growing cells.  相似文献   

14.
DNA delivery systems for gene therapy applications have to be able to trigger the uptake of plasmid DNA into the nucleus. We have tested two types of non-viral vector systems, lipofection (cationic lipid-based, using Lipofectamine) and polyfection (cationic polymer-based, using glycerol enhanced transferrinfection), for their ability to transfect confluent, contact inhibited primary human fibroblasts. While both systems worked well with growing fibroblasts, polyfection was superior with confluent cells. A slight reduction in cell associated plasmid DNA was observed with resting cells, but it was similar for both types of complexes. Lipofectamine showed a prevalence for transfecting cycling cells as judged by costaining transfected cells with cell cycle markers. No such bias was observed when glycerol enhanced transferrinfection was used. Microinjection of plasmid DNA/polylysine complexes into the cytoplasm of fibroblasts resulted in a higher percentage of expressing cells than injection of plasmid DNA, offering an explanation for the higher transfection levels obtained with transferrinfection in non-growing cells.  相似文献   

15.
Naringin (NG), a flavonoid in grapefruit and citrus, has been reported to exhibit antioxidant effects and pharmacological actions. Recently, we have reported that NG suppressed the cytotoxicity and apoptosis induced by H(2)O(2), a typical pro-oxidant, in mouse leukemia P388 cells. Cytosine arabinoside (1-beta-d-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite chemotherapeutic drug used for acute leukemia. It has been suggested that Ara-C-induced cytotoxicity is caused by apoptosis, which is mediated by reactive oxygen species (ROS). In this study, we examined the effect of NG on the cytotoxicity and apoptosis in mouse leukemia P388 cells treated with Ara-C. Ara-C caused cytotoxicity in a concentration and time-dependent manner in the cells. N-Acetyl-L-cysteine (NAC), cystamine (CysA) or a reduced form of glutathione (GSH), typical antioxidants significantly blocked Ara-C-induced cytotoxicity. Similarly, Ara-C-induced cell death was completely prevented by NG. NG strongly reduced ROS production caused by Ara-C in the cells. NG slightly increased the activities of antioxidant enzymes, catalase and glutathione peroxidase. Ara-C caused apoptosis with nuclear morphological change and DNA fragmentation. NG remarkably attenuated the Ara-C-induced apoptosis. NG completely blocked the DNA damage caused by Ara-C treatment at 6 h using the Comet assay. Our data suggest that NG reduces Ara-C-induced oxidative stress through both an inhibition of the generation of ROS production and an increase in antioxidant enzyme activities. Consequently, NG blocked apoptosis caused by Ara-C-induced oxidative stress, resulting in the inhibition of the cytotoxicity of Ara-C.  相似文献   

16.
The success of gene therapy is largely dependent on the delivery vector system. Efficient transfection and nontoxicity are two of the most important requirements of an ideal gene delivery vector. To generate both an efficient and nontoxic vector, we rationally constructed polymeric vectors to have simultaneous multiple functions, i.e., controlled degradation, an endosome disruptive function, and positive charges. Remarkably, the transfection efficiency of network poly(amino ester) (n-PAE) synthesized in this manner was comparable to that of polyethylenimine (PEI), one of the most efficient polymeric gene delivery vectors reported to date. However, there was a marked difference in cytotoxicity between the polymers. The majority of PEI-transfected cells were granulated and dead, whereas most of the cells transfected with n-PAE were viable and healthy. Successive events of efficient endosome escape of n-PAE/DNA polyplex and n-PAE biodegradation should result in high transfection efficiency and favorable cell viability response. The n-PAE-mediated transfection was also very efficient in the presence of serum. These data show that the approach we applied is a very appropriate way of making an ideal gene delivery carrier.  相似文献   

17.
Yang C  Wang X  Li H  Goh SH  Li J 《Biomacromolecules》2007,8(11):3365-3374
Cationic polymers have been receiving growing attention as gene delivery carriers. Herein, a series of novel cationic supramolecular polyrotaxanes with multiple cationic alpha-cyclodextrin (alpha-CD) rings threaded and blocked on a poly[(ethylene oxide)-ran-(propylene oxide)] (P(EO-r-PO)) random copolymer chain were synthesized and investigated for gene delivery. In the cationic polyrotaxanes, approximately 12 cationic alpha-CD rings were threaded on the P(EO-r-PO) copolymer with a molecular weight of 2370 Da and an EO/PO molar ratio of 4:1, while the cationic alpha-CD rings were grafted with linear or branched oligoethylenimine (OEI) of various chain lengths and molecular weights up to 600 Da. The OEI-grafted alpha-CD rings were only located selectively on EO segments of the P(EO-r-PO) chain, while PO segments were free of complexation. This increased the mobility of the cationic alpha-CD rings and the flexibility of the polyrotaxanes, which enhanced the interaction of the cationic alpha-CD rings with DNA and/or the cellular membrane. All cationic polyrotaxanes synthesized in this work could efficiently condense plasmid DNA to form nanoparticles that were suitable for delivery of the gene. Cytotoxicity studies showed that the cationic polyrotaxanes with all linear OEI chains of molecular weights up to 423 Da exhibited much less cytotoxicity than high-molecular-weight branched polyethylenimine (PEI) (25 kDa) in both HEK293 and COS7 cell lines. The cationic polyrotaxanes displayed high gene transfection efficiencies in a variety of cell lines including HEK293, COS7, BHK-21, SKOV-3, and MES-SA. Particularly, the gene delivery capability of the cationic polyrotaxanes in HEK293 cells was much higher than that of high-molecular-weight branched PEI (25 k).  相似文献   

18.
On exposure to an acidic pH, linear poly(amidoamine)s (PAAs) cause membrane perturbation and consequently have potential as endosomolytic polymers for the intracellular delivery of genes and toxins. Previous studies used PAAs in the hydrochloride form only. The aim of this study was to investigate systematically the effect of the PAA counterion on pH-dependent membrane activity, general cytotoxicity, and PAA solution properties to help guide optimization of PAA structure for further development of PAA-protein conjugates. PAAs (ISA 1, 4, 22, and 23; M(w) 10000-50000 g/mol) were synthesized to provide a library of PAAs having different counterions including the acetate, citrate, hydrochloride, lactate, phosphate, and sulfate salts. pH-Dependent membrane activity was assessed using a rat red blood cell haemolysis assay (conducted at a starting pH of 7.4, 6.5, or 5.5; 1 mg/mL; 1 h), and general cytotoxicity was investigated using a murine melanoma cell line (B16F10) and a human bladder endothelial-like cell line (ECV-304). Whereas poly(ethyleneimine) was haemolytic at the starting pH of 7.4 at 1 h [ approximately 50% haemoglobin (Hb) release], none of the PAA salts were haemolytic at a starting pH of 7.4 or 6.5. Although PAA acetate, citrate, and lactate were also non-haemolytic at the starting pH of 5.5, the sulfate and hydrochloride forms caused significant haemolysis (up to 80% Hb release) and ISA 22 and 23 phosphate were also markedly haemolytic ( approximately 70% Hb release). These counterion-specific differences were also clearly visible using scanning electron microscopy, which was used to visualize the red blood cell morphology. All PAAs were relatively nontoxic (IC(50) >or= 300-5000 microg/mL) compared to poly-l-lysine (IC(50) = 2-10 microg/mL), the PAA hydrochloride salts produced the greatest cytotoxicity, and the B16F10 cells were more sensitive than the ECV-304 cells. Small-angle neutron scattering suggested that ISA 23 hydrochloride had a larger hydrodynamic radius (5.1 +/- 0.2 nm) than the citrate salt (3.1 +/- 0.2 nm). These results provide indirect evidence for the salt- and pH-dependent changes in the conformation of the polymer coil. This study clearly demonstrates the importance of optimization of the counterion form when developing endosomolytic polymers designed to mediate pH-dependent membrane permeabilization.  相似文献   

19.
Sun H  Gao C 《Biomacromolecules》2010,11(12):3609-3616
We presented a general and facile strategy to prepare biocompatible multiamino polymers. Series of new monomers were synthesized by esterification of 2-hydroxyethyl methacrylate (HEMA) and Boc-amino acids, such as Boc-l-phenylalanine, Boc-glycine, Boc-l-alanine, Boc-l-valine, and Boc-l-lysine. Subsequent vinyl polymerization of monomers gave rise to vinyl poly(amino acid)s with a side primary amino group at each unit if deprotected. Both atom transfer radical polymerization (ATRP) and conventional free radical polymerization (FRP) were employed to prepare the multiamino polymers. A well controlled effect upon molecular weight with the standard first-order kinetics was achieved in cases of ATRP, and high molecular weight polymers were obtained via FRP. MTT assay showed that cell survival rates for the multiamino polymers were almost maintained above 90% and that their cytotoxicities were much lower than that of linear PEI (PEI 25000). Zeta potential measurements demonstrated that the vinyl poly(amino acid)s are electropositive, and AFM measurements showed that the vinyl poly(amino acid)s could tightly condense DNA into granular structures at a suitable concentration. The combination of facile availability, controlled productivity, low cytotoxicity and strong binding ability with DNA promises the great potential of the novel multiamino polymers in bioapplications.  相似文献   

20.
Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ~0.5 and led to siRNA/polymer complexes of ~100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号