首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
表皮葡萄球菌 (Staphylococcus epidermids) 是一种条件致病菌,SarA(Staphylococcal accessory regulator A)是该菌中一个全局性调控因子,它控制着细胞中许多与毒性相关的基因表达. 报道了SarA在转录水平直接调控atlE、lipAzinC基因的表达. RT-PCR和lacZ报告基因的分析结果显示,在表皮葡萄球菌ATCC35984中,SarA对atlE (自溶酶基因) 表达起负调控作用,而对lipA (脂肪酶基因) 和zinC (膜相关锌金属蛋白酶基因) 的表达则有正调控作用. 生物信息学分析表明,SarA控制atlE,lipAzinC 3种基因表达可能是通过与被调控基因上游的特定DNA序列的结合来实现的,该DNA结合区保守并富含AT碱基. 根据已报道的金黄色葡萄球菌中SarA的结合位点序列,利用Omiga软件分析并推测了SarA结合atlE,lipAzinC的可能区域. 基于SarA是一种多功能的毒素相关调控因子,结果提示,SarA能调控众多因子,可以作为防治表皮葡萄球菌感染的一个药物筛选靶点.  相似文献   

2.
Staphylococcus epidermidis is considered to be one of the most common causes of nosocomial bloodstream infections, particularly in immune-compromised individuals. Here, we report the development and application of a novel peptide nucleic acid probe for the specific detection of S. epidermidis by fluorescence in situ hybridization. The theoretical estimates of probe matching specificity and sensitivity were 89 and 87%, respectively. More importantly, the probe was shown not to hybridize with closely related species such as Staphylococcus aureus. The method was subsequently successfully adapted for the detection of S. epidermidis in mixed-species blood cultures both by microscopy and flow cytometry.  相似文献   

3.
Recent research has suggested that Staphylococcus epidermidis is a reservoir of genes that, after horizontal transfer, facilitate the potential of Staphylococcus aureus to colonize, survive during infection, or resist antibiotic treatment, traits that are notably manifest in methicillin‐resistant S. aureus (MRSA). S. aureus is a dangerous human pathogen and notorious for acquiring antibiotic resistance. MRSA in particular is one of the most frequent causes of morbidity and death in hospitalized patients. S. aureus is an extremely versatile pathogen with a multitude of mechanisms to cause disease and circumvent immune defenses. In contrast, most other staphylococci, such as S. epidermidis, are commonly benign commensals and only occasionally cause disease. Recent findings highlight the key importance of efforts to better understand how genes of staphylococci other than S. aureus contribute to survival in the human host, how they are transferred to S. aureus, and why this exchange appears to be uni‐directional.  相似文献   

4.
Staphylococcus epidermidis is an opportunistic pathogen that is one of the leading causes of medical device infections. Global regulators like the agr quorum-sensing system in this pathogen have received a limited amount of attention, leaving important questions unanswered. There are three agr types in S. epidermidis strains, but only one of the autoinducing peptide (AIP) signals has been identified (AIP-I), and cross talk between agr systems has not been tested. We structurally characterized all three AIP types using mass spectrometry and discovered that the AIP-II and AIP-III signals are 12 residues in length, making them the largest staphylococcal AIPs identified to date. S. epidermidis agr reporter strains were developed for each system, and we determined that cross-inhibitory interactions occur between the agr type I and II systems and between the agr type I and III systems. In contrast, no cross talk was observed between the type II and III systems. To further understand the outputs of the S. epidermidis agr system, an RNAIII mutant was constructed, and microarray studies revealed that exoenzymes (Ecp protease and Geh lipase) and low-molecular-weight toxins were downregulated in the mutant. Follow-up analysis of Ecp confirmed the RNAIII is required to induce protease activity and that agr cross talk modulates Ecp activity in a manner that mirrors the agr reporter results. Finally, we demonstrated that the agr system enhances skin colonization by S. epidermidis using a porcine model. This work expands our knowledge of S. epidermidis agr system function and will aid future studies on cell-cell communication in this important opportunistic pathogen.  相似文献   

5.
The agr quorum-sensing system in Staphylococci controls the production of surface proteins and exoproteins. In the pathogenic species Staphylococcus aureus, these proteins include many virulence factors. The extracellular signal of the quorum-sensing system is a thiolactone-containing peptide pheromone, whose sequence varies among the different staphylococcal strains. We demonstrate that a synthetic Staphylococcus epidermidis pheromone is a competent inhibitor of the Staphylococcus aureus agr system. Derivatives of the pheromone, in which the N-terminus or the cyclic bond structure was changed, were synthesized and their biological activity was determined. The presence of a correct N-terminus and a thiolactone were absolute prerequisites for an agr-activating effect in S. epidermidis, whereas inhibition of the S. aureus agr system was less dependent on the original structure. Our results show that effective quorum-sensing blockers that suppress the expression of virulence factors in S. aureus can be designed based on the S. epidermidis pheromone.  相似文献   

6.
Staphylococcus epidermidis remains the predominant pathogen in prosthetic-device infections. Ventricular assist devices, a recently developed form of therapy for end-stage congestive heart failure, have had considerable success. However, infections, most often caused by Staphylococcus epidermidis, have limited their long-term use. The transcutaneous driveline entry site acts as a potential portal of entry for bacteria, allowing development of either localized or systemic infections. A novel in vitro binding assay using explanted drivelines obtained from patients undergoing transplantation and a heterologous lactococcal system of surface protein expression were used to identify S. epidermidis surface components involved in the pathogenesis of driveline infections. Of the four components tested, SdrF, SdrG, PIA, and GehD, SdrF was identified as the primary ligand. SdrF adherence was mediated via its B domain attaching to host collagen deposited on the surface of the driveline. Antibodies directed against SdrF reduced adherence of S. epidermidis to the drivelines. SdrF was also found to adhere with high affinity to Dacron, the hydrophobic polymeric outer surface of drivelines. Solid phase binding assays showed that SdrF was also able to adhere to other hydrophobic artificial materials such as polystyrene. A murine model of infection was developed and used to test the role of SdrF during in vivo driveline infection. SdrF alone was able to mediate bacterial adherence to implanted drivelines. Anti-SdrF antibodies reduced S. epidermidis colonization of implanted drivelines. SdrF appears to play a key role in the initiation of ventricular assist device driveline infections caused by S. epidermidis. This pluripotential adherence capacity provides a potential pathway to infection with SdrF-positive commensal staphylococci first adhering to the external Dacron-coated driveline at the transcutaneous entry site, then spreading along the collagen-coated internal portion of the driveline to establish a localized infection. This capacity may also have relevance for other prosthetic device–related infections.  相似文献   

7.
苦参碱对表皮葡萄球菌生物被膜作用初探   总被引:2,自引:0,他引:2  
通过中药有效成分苦参碱对表皮葡萄球菌生物被膜抑制作用的研究,为表皮葡萄球菌生物被膜引起的相关感染提供新的治疗途径。利用XTT减低法评价苦参碱对表皮葡萄球菌初始粘附及生物被膜内细菌代谢的影响,镜下观察该药对表皮葡萄球菌生物被膜的形态学影响。结果表明:苦参碱对表皮葡萄球菌生物被膜菌的SMIC50和SMIC80分别为62.5 mg/L和500 mg/L;1 000 mg/L浓度的苦参碱对表皮葡萄球菌早期粘附有抑制作用;250 mg/L浓度的苦参碱对表皮葡萄球菌生物被膜的形态有显著影响。因此可见,苦参碱对表皮葡萄球菌生物被膜的形成与粘附均有抑制作用。  相似文献   

8.
Mixed-genotype infections (infections of a host by more than one pathogen genotype) are common in plant-pathogen systems. However their impact on the course of the infection and especially on pathogen virulence and host response to infection is poorly understood. We investigated the effects of mixed-genotype infections on several parameters: host resistance and tolerance, as well as pathogen aggressiveness and virulence. For these purposes, we inoculated three wheat lines with three Mycosphaerella graminicola genotypes, alone or in mixtures, in a greenhouse experiment. For some of the mixtures, disease severity and virulence were lower than expected from infection by the same genotypes alone, suggesting that competition between genotypes was reducing their aggressiveness and virulence. One host line was fully resistant, but there were differences in resistance in the other lines. The two host lines that became infected differed slightly in tolerance, but mixed-genotype infections had no effect on host tolerance.  相似文献   

9.
Staphylococcus epidermidis is nowadays regarded as the most frequent cause of nosocomial infections and indwelling medical device-associated infections. One of the features that contributes to the success of this microorganism and which is elemental to the onset of pathogenesis is its ability to form biofilms. Cells in this mode of growth are inherently more resistant to antimicrobials. Seeking to treat staphylococcal-related infections and to prevent their side effects, such as the significant morbidity and health care costs, many efforts are being made to develop of new and effective antistaphylococcal drugs. Indeed, due to its frequency and extreme resistance to treatment, staphylococcal-associated infections represent a serious burden for the public health system. This review will provide an overview of some conventional and emerging anti-biofilm approaches in the management of medical device-associated infections related to this important nosocomial pathogen.  相似文献   

10.
Owing to their massive use, Staphylococcus epidermidis has recently developed significant resistance to several antibiotics, and became one of the leading causes of hospital-acquired infections. Current antibiotics are typically ineffective in the eradication of bacteria in biofilm-associated persistent infections. Accordingly, the paucity of effective treatment against cells in this mode of growth is a key factor that potentiates the need for new agents active in the prevention or eradication of biofilms. Daptomycin and linezolid belong to the novel antibiotic therapies that are active against gram-positive cocci. On the other hand, rifampicin has been shown to be one of the most potent, prevalent antibiotics against S. epidermidis biofilms. Therefore, the main aim of this study was to study the susceptibility of S. epidermidis biofilm cells to the two newer antimicrobial agents previously mentioned, and compare the results obtained with the antimicrobial effect of rifampicin, widely used in the prevention/treatment of indwelling medical device infections. To this end the in vitro activities of daptomycin, linezolid, and rifampicin on S. epidermidis biofilms were accessed, using these antibiotics at MIC and peak serum concentrations. The results demonstrated that at MIC concentration, rifampicin was the most effective antibiotic tested. At peak serum concentration, both strains demonstrated similar susceptibility to rifampicin and daptomycin, with colony-forming units (CFUs) reductions of approximately 3–4 log10, with a slightly lower response to linezolid, which was also more strain dependent. However, considering all the parameters studied, daptomycin was considered the most effective antibiotic tested, demonstrating an excellent in vitro activity against S. epidermidis biofilm cells. In conclusion, this antibiotic can be strongly considered as an acceptable therapeutic option for S. epidermidis biofilm-associated infections and can represent a potential alternative to rifampicin in serious infections where rifampicin resistance becomes prevalent.  相似文献   

11.
By use of plane and solid geometry and probability models, efficiencies of infection and competition for nutrients and infection sites by a nonpathogenic strain of Fusarium oxysporum (C14) with F. oxysporum f. sp. cucumerinum on the rhizoplane of cucumber were calculated. The model is derived from previously published data. Efficiencies for successful infection were 0.04 chlamydospores per infection site for both pathogen and nonpathogen. Observed successful infections by the pathogen in competition with the nonpathogen were close in values to the competition ratio (CR) calculated as the number of chlamydospores on the infection court of the pathogen divided by the total number of both pathogen and nonpathogen at relatively low densities. When total chlamydospores were, on average, closer than 175 μm apart, however, competition for nutrients/mutual inhibition occurred. At such densities there was an overestimation of the effect of competition for infection sites. These relationships were modeled at inoculum densities of pathogen and/or nonpathogen of 5000 chlamydospores per g soil and above, however, in the field, maximum densities of 1000 colony forming units/g (cfu) were observed. Most likely models of competition for infection sites at this density of the pathogen revealed that infection efficiency was only approximately halved, even when 0.98 of the possible 30 infection sites were occupied by the nonpathogen. It is conclude that competition for nutrients and/or infection sites is an insignificant factor in biocontrol of Fusarium wilt diseases by nonpathogenic fusaria.  相似文献   

12.
LuxR/LuxI-type quorum-sensing systems have been shown to be important for symbiotic interactions between a number of rhizobium species and host legumes. In this study, we found that different isolates of Mesorhizobium tianshanense, a moderately-growing Rhizobium that forms nodules on a number of types of licorice plants, produces several different N-acyl homoserine lactone-like molecules. In M. tianshanense CCBAU060A, we performed a genetic screen and identified a network of regulatory components including a set of LuxI/LuxR-family regulators as well as a MarR-family regulator that is required for quorum-sensing regulation. Furthermore, compared with the wild-type strains, quorum-sensing deficient mutants showed a reduced growth rate and were defective in nodule formation on their host plant Glycyrrhiza uralensis. These data suggest that different M. tianshanense strains may use diverse quorum-sensing systems to regulate symbiotic process. H. Cao, M. Yang, and H. Zheng contributed equally to this work.  相似文献   

13.

Background

Staphylococcus epidermidis orthopedic device infections are caused by direct inoculation of commensal flora during surgery and remain rare, although S. epidermidis carriage is likely universal. We wondered whether S. epidermidis orthopedic device infection strains might constitute a sub-population of commensal isolates with specific virulence ability. Biofilm formation and invasion of osteoblasts by S. aureus contribute to bone and joint infection recurrence by protecting bacteria from the host-immune system and most antibiotics. We aimed to determine whether S. epidermidis orthopedic device infection isolates could be distinguished from commensal strains by their ability to invade osteoblasts and form biofilms.

Materials and Methods

Orthopedic device infection S. epidermidis strains (n = 15) were compared to nasal carriage isolates (n = 22). Osteoblast invasion was evaluated in an ex vivo infection model using MG63 osteoblastic cells co-cultured for 2 hours with bacteria. Adhesion of S. epidermidis to osteoblasts was explored by a flow cytometric approach, and internalized bacteria were quantified by plating cell lysates after selective killing of extra-cellular bacteria with gentamicin. Early and mature biofilm formations were evaluated by a crystal violet microtitration plate assay and the Biofilm Ring Test method.

Results

No difference was observed between commensal and infective strains in their ability to invade osteoblasts (internalization rate 308+/−631 and 347+/−431 CFU/well, respectively). This low internalization rate correlated with a low ability to adhere to osteoblasts. No difference was observed for biofilm formation between the two groups.

Conclusion

Osteoblast invasion and biofilm formation levels failed to distinguish S. epidermidis orthopedic device infection strains from commensal isolates. This study provides the first assessment of the interaction between S. epidermidis strains isolated from orthopedic device infections and osteoblasts, and suggests that bone cell invasion is not a major pathophysiological mechanism in S. epidermidis orthopedic device infections, contrary to what is observed for S. aureus.  相似文献   

14.
Staphylococcus epidermidis is a clinically important opportunistic pathogen that forms biofilm infections on nearly all types of indwelling medical devices. The biofilm forming capability of S. epidermidis has been linked to the presence of the ica operon in the genome, and the amount of biofilm formation measured by the crystal violet (CV) adherence assay. Six S. epidermidis strains were characterized for their ica status using PCR, and their biofilm forming ability over 6 days, using the CV assay and a flow cell system. Ica-negative strains characterized as ‘negative for biofilm formation’ based on the CV assay were demonstrated to form strongly attached biofilms after 6 days. However, the biofilms were not as extensive as the ica-positive strains. It was concluded that ica is not required for biofilm formation, nor is the 24-h CV assay generalizable for predicting the 6-day biofilm-forming ability for all S. epidermidis strains.  相似文献   

15.
The study reported here investigated the interactions of successive infections and acquired resistance of pigs to challenge infections of Schistosoma japonicum. Two morphologically indistinguishable geographical isolates from China (from Anhui and Zhejiang provinces) were used for the infections. The worms of the two isolates were distinguishable by PCR-linked restriction fragment length polymorphism analysis of the nicotinamide adenine dinucleotide phosphate dehydrogenase I gene of the mitochondrial genome. Thirty-two pigs divided into seven groups were used in the experiment. Two groups received a single infection by either the Anhui or the Zhejiang isolate. In Challenge Groups 1, 4, 6, 8 and 12, a primary infection of the Zhejiang isolate was followed by a challenge infection with the Anhui isolate at week 1, 4, 6, 8 or 12 after the primary infection. In this way it was possible to determine whether worms recovered by perfusion originated from the primary or the challenge infection. Only the challenge infection at week 1 resulted in a higher worm burden when compared with a single primary infection with the Zhejiang isolate. The results showed that challenge worms were able to establish, and that the proportion of worms originating from challenge infection increased at the later challenge infections, however without an increase in the total number of worms. In addition, mixed pairs of the two isolates were found in all challenge-infected groups. The results indicate that pigs are able to mount a partial resistance against re-infection with S. japonicum by 4 weeks after a primary infection, but that worms of the challenge infections eventually replace the primary infection. The finding of mixed pairs of the two isolates indicates that worms of S. japonicum are either polygamous or able to wait in solitude for up to 12 weeks for a partner.  相似文献   

16.
《Journal of molecular biology》2019,431(23):4699-4711
The human pathogen Staphylococcus aureus is a gram-positive bacterium that causes difficult-to-treat infections. One of the reasons why S. aureus is such as successful pathogen is due to the cell-to-cell physiological variability that exists within microbial communities. Many laboratories around the world study the genetic mechanisms involved in S. aureus cell heterogeneity to better understand infection mechanism of this bacterium. It was recently shown that the Agr quorum-sensing system, which antagonistically regulates biofilm-associated or acute bacteremia infections, is expressed in a subpopulation of specialized cells. In this review, we discuss the different genetic mechanism for bacterial cell differentiation and the physiological properties of the distinct cell types that are already described in S. aureus communities, as well as the role that these cell types play during an infection process.  相似文献   

17.
Objectives. Prevalence of Esophageal Candidiasis in non-immune compromised patients in a semi-urban town, was investigated. Further, various investigation procedures to detect the candidal pathogen were compared. Methods. A total of 933 patients with odynophagia and dysphagia were included in this study. Upper GI endoscopy was performed in all these patients and biopsy specimens were taken from the site of lesions. Oral swabs were also taken. Both these specimens were analyzed for the presence of fungal pathogen through, direct microscopic examination and culture method. Results. Among the diagnostic techniques, culture of biopsy in Sabouraud's media was found to be the most reliable method. Of the 933 trialists, 61 were found to have lesions of varied degree of severity. Among these, 56 were positive for fungal pathogen, which was confirmed by germ tube test, cultural characteristics, auxanogram, etc., Candida albicans (87.5%) was the most predominant pathogen followed by C. tropicalis (8.9%). Men in the age group of 40 years and above were observed to have higher frequency of candidal infections compared to other groups of trialists. Conclusion. This investigation strongly suggests the possibilities of candidal infections in patient seven in the absence of predisposing factors such as HIV infection or immune compromised conditions. Hence, patients with symptoms of odynophagia and dysphagia shall be considered for possible esophageal candidiasis.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
To detect Babesia-infected Ixodes persulcatus Shulze in a suburb of St. Petersburg, Russia, 738 adult ticks were studied using Babesia specific primers and PCR techniques. The entire sample (more than 1,200 individuals) was screened for the presence of Borrelia spp., Ehrlichia spp. and tick-borne encephalitis virus (TBEV). All 7 ticks infected with Babesia microti, were also infected with other pathogens (all 7 among 417 infected ticks, zero amongst the remaining 321 naive ones (χ2 = 5.25, p < 0.05). Babesia microti occurred twice with Borrelia afzelii, 3 times with Borrelia garinii, once with both, and once with both B. garinii and TBEV. The prevalence of infection with Borrelia spp. was 34.0%, with Ehrlichia spp. 6.2%, with TBEV 1.5%, and with Ba microti 0.9%. Babesia microti infection was not found in combination with Ehrlichia sp. or Borrelia burgdorferi sensu stricto. The latter pathogen (prevalence 2.6%), just like Ba. microti, was not encountered as a monoinfection. The data suggest that Ba. microti infection can only survive in I. persulcatus in combination with Borrelia spp. (7 of 7 infections). The disease in humans is more severe and longer-lasting when more than one pathogen is involved. Our observations show that the well known St. Petersburg focus of tick-borne encephalitis and Lyme disease is also a focus of ehrlichiosis and babesiosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Chlamydia trachomatis is a widespread bacterium that causes trachoma and genital tract infections in humans. The fact that the growth of this pathogen does not normally occur outside living cells poses a challenge in its diagnosis. The present study aimed to compare the efficacies of different molecular and cultural methods in the detection of C. trachomatis in urine samples collected from patients with urinary tract infections. Examined detection methods involved the Gen-Probe C. trachomatis (GP-CT) assay, direct antigen detection by enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) method. The efficacies of these methods were compared to that of the cell culture technique depending on sensitivity, specificity, and accuracy. C. trachomatis was detected in 25 out of 50 (50%) of examined urine samples using the cell culture method. Compared with this standard technique, the GP-CT assay was the most sensitive procedure, being able to detect the pathogen in all positive samples, followed by PCR and ELISA, which showed 60% and 40% sensitivities, respectively. PCR and ELISA displayed the highest level of specificity (100%) compared to the cell culture method with the GP-CT assay showing 40% specificity. The rate of accuracy was comparable between the GP-CT, PCR, and ELISA methods ranging from 70–80% of the accuracy of the cell culture method. The above results suggest that C. trachomatis is a frequent pathogen associated with upper and lower urinary tract infections. Both the GP-CT assay and PCR method can be recommended as reliable detection methods for C. trachomatis, and the GP-CT can be used as a screening tool.  相似文献   

20.
Today, we find ourselves in an urgent need for novel antibacterial drugs, as many important human pathogens have acquired multiple antibiotic resistance factors. Among those, Staphylococcus aureus and S. epidermidis play a major role as the leading sources of nosocomial infections. Recently, it has been suggested to develop therapeutics that attack bacterial virulence rather than kill bacteria. Such drugs are called "antipathogenic" and are believed to reduce the development of antibiotic resistance. Specifically, cell-density-dependent gene regulation (quorum-sensing) in bacteria has been proposed as a potential target. While promising reports exist about quorum-sensing blockers in gram-negative bacteria, the use of the staphylococcal quorum-sensing system as a drug target is now seen in an increasingly critical way. Inhibition of quorum-sensing in Staphylococcus has been shown to enhance biofilm formation. Furthermore, down-regulation or mutation of the Staphylococcus quorum-sensing system increases bacterial persistence in device-related infection, suggesting that interference with quorum-sensing would enhance rather than suppress this important type of staphylococcal disease. The chemical nature and biological function of another proposed staphylococcal quorum-sensing inhibitor, named "RIP", are insufficiently characterized. Targeting quorum-sensing systems might in principle constitute a reasonable way to find novel antibacterial drugs. However, as outlined here, this approach requires careful investigation in every specific pathogen and type of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号