首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helothermine, a recently isolated toxin from the venom of the Mexican beaded lizard Heloderma horridum horridum was tested on K+ currents of newborn rat cerebellar granule cells. In whole-cell voltageclamp experiments, cerebellar granule neurons exhibited at least two different K+ current components: a first transient component which is similar to an I A-type current, is characterized by fast activating and inactivating kinetics and blocked by 4-aminopyridine; a second component which is characterized by noninactivating kinetics, is blocked by tetraetylammonium ions and resembles the classical delayed-rectifier current. When added to the standard external solution at concentrations ranging between 0.1 and 2 m helothermine reduced the pharmacologically isolated I A-type current component in a voltage- and dose-dependent way, with a half-maximal inhibitory concentration (IC50) of 0.52 m. A comparison between control and nelothermine-modified peak transient currents shows a slowdown of activation and inactivation kinetics. The delayed-rectifier component inhibition was concentration dependent (IC50 = 0.86 m) but not voltage dependent. No frequency-or use-dependent block was observed on both K+ current types. Perfusing the cells with control solution resulted in quite a complete current recovery. We conclude that helothermine acts with different affinities on two types of K+ current present in central nervous system neurons.  相似文献   

2.
Voltage-gated whole-cell currents were recorded from cultured microglial cells which had been developed in the presence of the macrophage/microglial growth factor granulocyte/macrophage colony-stimulating factor. Outward K+ currents (I K) were most prominent in these cells. I Kcould be activated at potentials more positive than –40 mV. Half-maximal activation of I Kwas achieved at –13.8 mV and half-maximal inactivation of I Kwas determined at –33.8 mV. The recovery of I Kfrom inactivation was described by a time constant of 7.9 sec. For a tenfold change in extracellular K+ concentration the reversal potential of I Kshifted by 54 mV.Extracellularly applied 10 mm tetraethylammonium chloride reduced I K by about 50%, while 5 mm 4-aminopyridine almost completely abolished I K. Several divalent cations (Ba2+, Cd2+, Co2+, Zn2+) reduced current amplitudes and shifted the activation curve of I Kto more positive values. Charybdotoxin (IC50 = 1.14 nm) and noxiustoxin (IC50=0.89 nm) blocked I Kin a concentration-dependent manner, whereas dendrotoxin and mast cell degranulating peptide had no effect on the current amplitudes.  相似文献   

3.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

4.
To study K+ channels in the basolateral membrane of chloride-secreting epithelia, rat tracheal epithelial monolayers were cultured on permeable filters and mounted into an Ussing chamber system. The mucosal membrane was permeabilized with nystatin (180 μg/ml) in the symmetrical high K+ (145 mm) Ringer solution. During measurement of the macroscopic K+ conductance properties of the basolateral membrane under a transepithelial voltage clamp, we detected at least two types of K+ currents: one is an inwardly rectifying K+ current and the other is a slowly activating outwardly rectifying K+ current. The inwardly rectifying K+ current is inhibited by Ba2+. The slowly activating K+ current was potentiated by cAMP and inhibited by clofilium, phorbol 12-myristae 13-acetate (PMA) and lowering temperature. This is consistent with the biophysical characteristics of I SK channel. RT-PCR analysis revealed the presence of I SK cDNA in the rat trachea epithelia. Although 0.1 mm Ba2+ only had minimal affect on short-circuit current (I sc) induced by cAMP in intact epithelia, 0.1 mm clofilium strongly inhibited it. These results indicate that I SK might be important for maintaining cAMP-induced chloride secretion in the rat trachea epithelia. Received: 1 March 1996/Revised: 5 August 1996  相似文献   

5.
The efficacy and mechanism of -dendrotoxin (DTX) block of K+ channel currents in Vicia stomatal guard cells was examined. Currents carried by inward- and outward-rectifying K+ channels were determined under voltage clamp in intact guard cells, and block was characterized as a function of DTX and external K+ (K+) concentrations. Added to the bath, 0.1-30 nM DTX blocked the inward-rectifying K+ current (IK,in), but was ineffective in blocking current through the outward-rectifying K+ channels (IK,out) even at concentrations of 30 nM. DTX block was independent of clamp voltage and had no significant effect on the voltage-dependent kinetics for IK,in, neither altering its activation at voltages negative of –120 mV nor its deactivation at more positive voltages. No evidence was found for a use dependence to DTX action. Block of IK,in followed a simple titration function with an apparent K1/2 for block of 2.2 nM in 3 mm K o + . However, DTX block was dependent on the external K+ concentration. Raising K+ from 3 to 30 mm slowed block and resulted in a 60–70% reduction in its efficacy (apparent K i = 10 mm in 10 nm DTX). The effect of K+ in protecting I K,in was competitive with DTX and specific for permeant cations. A joint analysis of IK,in block with DTX and K+ concentration was consistent with a single class of binding sites with a K d for DTX of 240 pm. A K d of 410 m for extracellular K+ was also indicated. These results complement previous studies implicating a binding site requiring extracellular K+ (K1/2 1 mm) for IK,in activation; they parallel features of K+ channel block by DTX and related peptide toxins in many animal cells, demonstrating the sensitivity of plant plasma membrane K+ channels to nanomolar toxin concentrations under physiological conditions; the data also highlight one main difference: in the guard cells, DTX action appears specific to the K+ inward rectifier.We thank J.O. Dolly (Imperial, London) and S.M. Jarvis (University of Kent, Canterbury) for several helpful discussions. This work was supported by SERC grant GR/H07696 and was aided by equipment grants from the Gatsby Foundation, the Royal Society and the University of London Central Research Fund. G.O. was supported by an Ausbildungsstipendium (OB 85/1-1) from the Deutsche Forschungsgemeinschaft. F.A. holds a Sainsbury Studentship.  相似文献   

6.
The modulation of I A K+ current by ten trivalent lanthanide (Ln3+) cations spanning the series with ionic radii ranging from 0.99 ? to 1.14 ? was characterized by the whole-cell patch clamp technique in bovine adrenal zona fasciculata (AZF) cells. Each of the ten Ln3+s reduced I A amplitude measured at +20 mV in a concentration-dependent manner. Smaller Ln3+s were the most potent and half-maximally effective concentrations (EC50s) varied inversely with ionic radius for the larger elements. Estimation of EC50s yielded the following potency sequence: Lu3+ (EC50= 3.0 μm) ≈ Yb3+ (EC50= 2.7 μm) > Er3+ (EC50= 3.7 μm) ≥ Dy3+ (EC50= 4.7 μm) > Gd3+ (EC50= 6.7 μm) ≈ Sm3+ (EC50= 6.9 μm) > Nd3+ (EC50= 11.2 μm) > Pr3+ (EC50= 22.3 μm) > Ce3+ (EC50= 28.0 μm) > La3+ (EC50= 33.7 μm). Ln3+s altered selected voltage-dependent gating and kinetic parameters of I A with a potency and order of effectiveness that paralleled the reduction of I A amplitude. Ln3+s markedly slowed activation kinetics and shifted the voltage-dependence of I A gating such that activation and steady-state inactivation occurred at more depolarized potentials. In contrast, Ln3+s did not measurably alter inactivation or deactivation kinetics and only slightly slowed kinetics of inactivated channels returning to the closed state. Replacement of external Ca2+ with Mg2+ had no effect on the concentration-dependent inhibition of I A by Ln3+s. In contrast to their action on I A K+ current, Ln3+s inhibited T-type Ca2+ currents in AZF cells without slowing activation kinetics. These results indicate that Ln3+ modulate I A K+ channels through binding to a site on I A channels located within the electric field but which is not specific for Ca2+. They are consistent with a model where Ln3+ binding to negative charges on the gating apparatus alters the voltage-dependence and kinetics of channel opening. Ln3+s modulate transient K+ and Ca2+ currents by two fundamentally different mechanisms. Received: 21 January 1997/Revised: 3 April 1998  相似文献   

7.
The effect of extracellular cation concentration and membrane voltage on the current carried by outward-rectifying K+ channels was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with double-barrelled microelectrodes and the K+ current was monitored under voltage clamp in 0.1–30 mm K+ and in equivalent concentrations of Rb+, Cs+ and Na+. From a conditioning voltage of −200 mV, clamp steps to voltages between −150 and +50 mV in 0.1 mm K+ activated current through outward-rectifying K+ channels (I K, out) at the plasma membrane in a voltage-dependent fashion. Increasing [K+] o shifted the voltage-sensitivity of I K, out in parallel with the equilibrium potential for K+ across the membrane. A similar effect of [K+] o was evident in the kinetics of I K, out activation and deactivation, as well as the steady-state conductance- (g K ) voltage relations. Linear conductances, determined as a function of the conditioning voltage from instantaneous I-V curves, yielded voltages for half-maximal conductance near −130 mV in 0.1 mm K+, −80 mV in 1.0 mm K+, and −20 mV in 10 mm K+. Similar data were obtained with Rb+ and Cs+, but not with Na+, consistent with the relative efficacy of cation binding under equilibrium conditions (K+≥ Rb+ > Cs+ > > Na+). Changing Ca2+ or Mg2+ concentrations outside between 0.1 and 10 mm was without effect on the voltage-dependence of g K or on I K, out activation kinetics, although 10 mm [Ca2+] o accelerated current deactivation at voltages negative of −75 mV. At any one voltage, increasing [K+] o suppressed g K completely, an action that showed significant cooperativity with a Hill coefficient of 2. The apparent affinity for K+ was sensitive to voltage, varying from 0.5 to 20 mm with clamp voltages near −100 to 0 mV, respectively. These, and additional data indicate that extracellular K+ acts as a ligand and alters the voltage-dependence of I K, out gating; the results implicate K+-binding sites accessible from the external surface of the membrane, deep within the electrical field, but distinct from the channel pore; and they are consistent with a serial 4-state reaction-kinetic model for channel gating in which binding of two K+ ions outside affects the distribution between closed states of the channel. Received: 27 November 1996/Revised: 4 March 1997  相似文献   

8.
One of the main effects of abscisic acid (ABA) is to induce net loss of potassium salts from guard cells enabling the stomata to close. K+ is released from the vacuole into the cytosol and then to the extracellular space. The effects of increasing cytosolic K+ on the voltage- and time-dependence of the outwardly rectifying K+-current (I K,out) in guard cell protoplasts (GCP) was examined in the whole-cell configuration of the patch-clamp technique. The same quantitative analysis was performed in the presence of ABA at different internal K+ concentrations ([K+] i ). Varying [K+] i in the patch pipette from 100 to 270 mm increased the magnitude of I K,out in a nonlinear manner and caused a negative shift in the midpoint (V 0.5) of its steady-state activation curve. External addition of ABA (10–20 μm) also increased the magnitude of I K,out at all [K+] i , but caused a shift in V 0.5 of the steady-state activation curve only in those GCP loaded with 150 mm internal K+ or less. Indeed, V 0.5 did not shift upon addition of ABA when the [K+] i was above 150 mm and up to 270 mm, i.e., the shift in V 0.5 caused by ABA depended on the [K+] i . Both increase in [K+] i and external addition of ABA, decreased (by ≈ 20%) the activation time constant (τ n ) of I K,out. The small decrease in τ n , in both cases, was found to be independent of the membrane voltage. The results indicate that ABA mimics the effect of increasing cytoplasmic K+, and suggest that ABA may increase I K,out and alter V 0.5 of its steady-state activation curve via an enhancement in cytosolic K+. This report describes for the first time the effects of [K+] i on the voltage- and time-dependence of I K,out in guard cells. It also provides an explanation for the quantitative (total membrane current) and qualitative (current kinetics) differences found between intact guard cells and their protoplasts. Received: 1 December 1995/Revised: 8 May 1996  相似文献   

9.
Two novel peptides were purified from the venom of the scorpion Pandinus imperator, and were named Pi2 and Pi3. Their complete primary structures were determined and their blocking effects on Shaker B K+ channels were studied. Both peptides contain 35 amino acids residues, compacted by three disulfide bridges, and reversibly block the Shaker B K+ channels. They have only one amino acid changed in their sequence, at position 7 (a proline for a glutamic acid). Whereas peptide Pi2, containing the Pro7, binds the Shaker B K+ channels with a K d of 8.2 nm, peptide Pi3 containing the Glu7 residue has a much lower affinity of 140 nm. Both peptides are capable of displacing the binding of 125I-noxiustoxin to brain synaptosome membranes. Since these two novel peptides are about 50% identical to noxiustoxin, the present results support previous data published by our group showing that the amino-terminal region of noxiustoxin, and also the amino-terminal sequence of the newly purified homologues: Pi2, and Pi3, are important for the recognition of potassium channels. Received: 13 November 1995/Revised: 11 March 1996  相似文献   

10.
Using the two-microelectrode voltage clamp technique in Xenopus laevis oocytes, we estimated Na+-K+-ATPase activity from the dihydroouabain-sensitive current (I DHO) in the presence of increasing concentrations of tetraethylammonium (TEA+; 0, 5, 10, 20, 40 mm), a well-known blocker of K+ channels. The effects of TEA+ on the total oocyte currents could be separated into two distinct parts: generation of a nonsaturating inward current increasing with negative membrane potentials (V M) and a saturable inhibitory component affecting an outward current easily detectable at positive V M. The nonsaturating component appears to be a barium-sensitive electrodiffusion of TEA+ which can be described by the Goldman-Hodgkin-Katz equation, while the saturating component is consistent with the expected blocking effect of TEA+ on K+ channels. Interestingly, this latter component disappears when the Na+-K+-ATPase is inhibited by 10 m DHO. Conversely, TEA+ inhibits a component of I DHO with a k d of 25±4 mm at +50 mV. As the TEA+-sensitive current present in I DHO reversed at –75 mV, we hypothesized that it could come from an inhibition of K+ channels whose activity varies in parallel with the Na+-K+-ATPase activity. Supporting this hypothesis, the inward portion of this TEA+-sensitive current can be completely abolished by the addition of 1 mm Ba2+ to the bath. This study suggests that, in X. laevis oocytes, a close link exists between the Na-K-ATPase activity and TEA+-sensitive K+ currents and indicates that, in the absence of effective K+ channel inhibitors, I DHO does not exclusively represent the Na+-K+-ATPase-generated current.  相似文献   

11.
The permeation properties of KAT1, an inward rectifying potassium channel from plant cells, were investigated with different ions in the external medium. With either K+, NH+ 4 or methylammonium (MA) in the external solution, the channel, expressed in Xenopus oocytes, appeared permeable to K+ and, to a lesser extent, to NH+ 4 but not to the slightly bigger, methylated analogue of NH+ 4, MA. Substituting NH+ 4 for K+ shifted the voltage dependency of channel activation further negative and hastened activation kinetics. This suggests that channel operation depends on the transported substrate. In mixed solution (50 mm K+, 50 mm MA) MA inhibited K+ current in a voltage-independent manner. The maximum block did not exceed 50% of the K+ current. In contrast, when NH+ 4 was the permeant ion (50 mm NH+ 4, 50 mm MA) MA caused a voltage-dependent, slowly developing open channel block, achieving complete inhibition at very negative voltages. The latter block could be partially overcome by the addition of K+ in the external solution. The data support a model in which ions, after entering the channel pore, compete with different affinities for binding sites on their permeation pathway. Received: 6 October 1997/Revised: 28 January 1998  相似文献   

12.
Transport properties mediated by ionic channels were studied by the patch-clamp technique in protoplasts from cortical parenchyma cells of maize roots (CPMR). While outward currents could be seen only occasionally, macroscopic voltage- and time-dependent potassium-selective inward currents (IK+in) were frequently observed in the whole-cell configuration. These currents increased continuously as a function of K+ concentration (in the range 3 – 200 mm) and the slow-saturating macroscopic chord-conductance was fitted by a Michaelis-Menten function with Km = 195 ± 39 mm. Other ions, like sodium and lithium, did not permeate at all through the maize root inward-channel, or like ammonium (PNH4+/ PK+ = 0.16 0.25) and rubidium (PRb+/PK+≈ 0.10) displayed a very low permeability ratio. Up to 5 mm Rb+ did not induce any inhibition of the K+ inward current, whereas submillimolar concentrations of Cs+ were sufficient to block, in a voltage-dependent manner, the inward currents. A decrease of the external potassium concentration favoured Cs+ inhibition (Km = 89 ± 6 μm and 26 ± 2 μm in 200 and 100 mm KCl, respectively). The potassium inward-currents were reversibly and consistently inhibited by submillimolar external concentrations of the metal ions Ni2+, Zn2+ and Co2+, while 1 mm La3+ only slightly decreased (≈10%) both the single channel conductance (9.2 ± 1.2 pS in 100 mm potassium) and the macroscopic current. In contrast to the case with Cs+, inhibition induced by other metal ions did not show any voltage dependence. These results suggest that, as with animal potassium channels, the inward channel of maize-root cortical cells has a narrow pore of permeation and metal ions decrease the K+ current, possibly by acting on binding sites located outside the pore. Received: 21 February 1997 / Accepted: 27 May 1997  相似文献   

13.
Summary We have studied current (I Str) through the Na, K pump in amphibian oocytes under conditions designed to minimize parallel undesired currents. Specifically,I Str was measured as the strophanthidin-sensitive current in the presence of Ba2–, Cd2+ and gluconate (in place of external Cl). In addition,I Str was studied only after the difference currents from successive applications and washouts of strophanthidin (Str) were reproducible. The dose-response relationship to Str in four oocytes displayed a meanK 0.5 of 0.4 m, with 2–5 m producing 84–93% pump' block. From baseline data with 12 Na+-preloaded oocytes, voltage clamped in the range [–170, +50 mV] with and without 2–5 m Str, the averageI Str depended directly onV m up to a plateau at 0 mV with interpolated zero current at –165 mV. In three oocytes, lowering the external [Na+] markedly decreased the voltage sensitivity ofI p , while producing only a small change in the maximal outwardI Str. In contrast, decreasing the external [K+] from 25 to 2.5mm reducedI Str at 0 mV without substantially affecting its voltage dependence. At K+ concentrations of 1mm, both the absolute value ofI Str at 0 mV and the slope conductance were reduced. In eight oocytes, the activation of the averagedI Str by [K+] o over the voltage interval [–30, +30 mV] was well fit by the Hill equation, with K=1.7±0.4mm andnH (the minimum number of K+ binding sites) =1.7±0.4. The results unequivocally establish that the cardiotonic-sensitive current ofRana oocytes displays only a positive slope conductance for [K+] o >1mm. There is therefore no need to postulate more than one voltage-sensitive step in the cycling of the Na, K pump under physiologic conditions. The effects of varying external Na+ and K+ are consistent with results obtained in other tissues and may reflect an ion-well effect.  相似文献   

14.
Summary The voltage- and time-dependent K+ current,I K + out , elicited by depolarization of corn protoplasts, was inhibited by the addition of calcium channel antagonists (nitrendipine, nifedipine, verapamil, methoxyverapamil, bepridil, but not La3+) to the extracellular medium. These results suggested that the influx of external Ca2+ was necessary for K+ current activation. The IC50, concentration of inhibitor that caused 50% reduction of the current, for nitrendipine was 1 m at a test potential of +60 mV following a 20-min incubation period.In order to test whether intracellular Ca2+ actuated the K+ current, we altered either the Ca2+ buffering capacity or the free Ca2+ concentration of the intracellular medium (pipette filling solution). By these means,I K + out could be varied over a 10-fold range. Increasing the free Ca2+ concentration from 40 to 400nm also shifted the activation of the K+ current toward more negative potentials. Maintaining cytoplasmic Ca2+ at 500nm with 40nm EGTA resulted in a more rapid activation of the K+ current. Thus the normal rate of activation of this current may reflect changes in cytoplasmic Ca2+ on depolarization. Increasing intracellular Ca2+ to 500nm or 1 m also led to inactivation of the K+ current within a few minutes. It is concluded thatI K + out is regulated by cytosolic Ca2+, which is in turn controlled by Ca2+ influx through dihydropyridine-, and phenylalkylamine-sensitive channels.  相似文献   

15.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

16.
The ectoderm of the one-day chick embryo generates dorsoventrally oriented short-circuit current (I sc) entirely dependent on extracellular sodium.At the dorsal cell membrane, the I sc was modified reversibly and in a concentration-dependent manner by: amiloride (60% decrease at 1 mm, with 2 apparent IC50s: 0.13 and 48 m), phlorizin (0.1 mm) or removal of glucose (30% decrease, additive to that of amiloride), SITS (1 mm, 13% decrease). Acidification or alkalinization of the dorsal (but not ventral) superfusate produced, respectively, decrease or increase of I sc with a pH50 of 7.64.Ba2+ (0.1–1 mm) from either side of the ectoderm decreased the I sc by 30%. Anthracene-9-carboxylic acid, furosemide and inducers of cAMP had no effect on electrophysiological properties of the blastoderm.The chick ectoderm is therefore a highly polarized epithelium containing, at the dorsal membrane, the high and low affinity amiloride-sensitive Na+ channels, Na+-glucose cotransporter, K+ channels and pH sensitivity, and, at the ventral membrane, the Na+, K+-ATPase and K+ channels. The Na+ transport reacts to pH, but lacks the cAMP regulatory system, well known in many epithelia.The active Na+ transport drives glucose and fluid into the intraembryonic space, across and around the blastoderm which, in the absence of blood circulation, could secure renewal of extracellular fluid and disposal of wastes and thus maintain the cell homeostasis.This work was supported by the Swiss National Research Foundation (grant 3.418-0.86 to P.K.), by the Roche Research Foundation (grant to U.K.), the Fond du 450ème anniversaire de l'Université de Lausanne and the Société Académique Vaudoise (grants to H.A.). We thank C. Bareyre, G. de Torrenté and R. Ksontini for excellent technical assistance and Drs. E. Raddatz, Y. de Ribaupierre and B. Prod'hom for helpful discussions.  相似文献   

17.
Adenosine 3′,5′-cyclic monophosphate (cAMP) is known to stimulate exogenous IsK channel current in the Xenopus oocyte expression system. The present study was performed to determine whether elevation of cytosolic cAMP in a native mammalian epithelium known to secrete K+ through endogenously expressed IsK channels would stimulate K+ secretion through these channels. The equivalent short circuit current (I sc ) across vestibular dark cell epithelium in gerbil was measured in a micro-Ussing chamber and the apical membrane current (I IsK ) and conductance (g IsK ) of IsK channels was recorded with both the on-cell macro-patch and nystatin-perforated whole-cell patch-clamp techniques. It has previously been shown that I sc can be accounted for by transepithelial K+ secretion and that the apical IsK channels constitute a significant pathway for K+ secretion. The identification of the voltage-dependent whole-cell currents in vestibular dark cells was strengthened by the finding that a potent blocker of IsK channels, chromanol 293B, strongly reduced I IsK from 646 ± 200 to 154 ± 22 pA (71%) and g IsK from 7.5 ± 2.6 to 2.8 ± 0.4 nS (53%). Cytoplasmic cAMP was elevated by applying dibutyryl cyclic AMP (dbcAMP), or the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX) and Ro-20-1724. dbcAMP (1 mm) increased I sc and I IsK from 410 ± 38 to 534 ± 40 μA/cm2 and from 4.3 ± 0.8 to 11.4 ± 2.2 pA, respectively. IBMX (1 mm) caused transient increases of I sc from 415 ± 30 to 469 ± 38 μA/cm2 and Ro-20-1724 (0.1 mm) from 565 ± 43 to 773 ± 58 μA/cm2. IBMX increased I IsK from 5.5 ± 1.5 to 16.9 ± 5.8 pA in on-cell experiments and from 191 ± 31 to 426 ± 53 pA in whole-cell experiments. The leak conductance due to all non-IsK channel sources did not change during dbcAMP and IBMX while 293B in the presence of dbcAMP reduced I IsK by 84% and g IsK by 62%, similar to unstimulated conditions. These results demonstrate that the cAMP pathway is constitutively active in vestibular dark cells and that the cAMP pathway stimulates transepithelial K+ secretion by increasing IsK channel current rather than by altering another transport pathway. Received: 9 June 1995/Revised: 17 October 1996  相似文献   

18.
The potency and specificity of a novel organic I h current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 μm DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 μm DK or external Cs+ (3 mm) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely I h . The block of I h by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 μm) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as I h , we conclude that 10 μm DK can preferentially reduce I h without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of I h in neurons. Received: 3 March 1995/Revised: 8 July 1997  相似文献   

19.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between −60 and −40 mV with a potential of half-maximal activation, E50, at −47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between −60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at −40 mV. The time constant of deactivation was 126 msec at −80 mV and 16.9 msec at −110 mV. In symmetrical 105 mm K+, the single-channel conductance (γ) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13–15°C. In Na+-rich solution with 2.5 mm extracellular K+γ was 7 pS and the reversal potential was negative to −80 mV, indicating a high selectivity for K+ over Na+. γ depended on extracellular K+ concentration (K D = 19.6 mm) and temperature (Q 10= 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel current amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mm. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50= 6.8 nm) and mast cell degranulating peptide (MCDP, IC50= 41.9 nm). In Ringer solution the membrane potential of macroscopic I-channel patches was about −65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential. Received: 2 June 1995/Revised: 13 October 1995  相似文献   

20.
Muscarinic receptor-linked G protein, G i , can directely activate the specific K+ channel (I K(ACh)) in the atrium and in pacemaker tissues in the heart. Coupling of G i to the K+ channel in the ventricle has not been well defined. G protein regulation of K+ channels in isolated human ventricular myocytes was examined using the patch-clamp technique. Bath application of 1 μm acetylcholine (ACh) reversibly shortened the action potential duration to 74.4 ± 12.1% of control (at 90% repolarization, mean ±sd, n= 8) and increased the whole-cell membrane current conductance without prior β-adrenergic stimulation in human ventricular myocytes. The ACh effect was reversed by atropine (1 μm). In excised inside-out patch configurations, application of GTPγS (100 μm) to the bath solution (internal surface) caused activation of I K(ACh) and/or the background inwardly-rectifying K+ channel (I K1) in ventricular cell membranes. I K(ACh) exhibited rapid gating behavior with a slope conductance of 44 ± 2 pS (n= 25) and a mean open lifetime of 1.8 ± 0.3 msec (n= 21). Single channel activity of GTPγS-activated I K1 demonstrated long-lasting bursts with a slope conductance of 30 ± 2 pS (n= 16) and a mean open lifetime of 36.4 ± 4.1 msec (n= 12). Unlike I K(ACh), G protein-activated I K1 did not require GTP to maintain channel activity, suggesting that these two channels may be controlled by G proteins with different underlying mechanisms. The concentration of GTP at half-maximal channel activation was 0.22 μm in I K(ACh) and 1.2 μm in I K1. Myocytes pretreated with pertussis toxin (PTX) prevented GTP from activating these channels, indicating that muscarinic receptor-linked PTX-sensitive G protein, G i , is essential for activation of both channels. G protein-activated channel characteristics from patients with terminal heart failure did not differ from those without heart failure or guinea pig. These results suggest that ACh can shorten the action potential by activating I K(ACh) and I K1 via muscarinic receptor-linked G i proteins in human ventricular myocytes. Received: 23 September 1996/Revised: 18 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号