首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perceived importance of tellurium (Te) in biological systems has lagged behind selenium (Se), its lighter sister in the Group 16 chalcogens, because of tellurium's lower crustal abundance, lower oxyanion solubility and biospheric mobility and the fact that, unlike Se, Te has yet to be found to be an essential trace element. Te applications in electronics, optics, batteries and mining industries have expanded during the last few years, leading to an increase in environmental Te contamination, thus renewing biological interest in Te toxicity. This chalcogen is rarely found in the nontoxic, elemental state (Te0), but its soluble oxyanions, tellurite (TeO32−) and tellurate (TeO42−), are toxic for most forms of life even at very low concentrations. Although a number of Te resistance determinants (TelR) have been identified in plasmids or in the bacterial chromosome of different species of bacteria, the genetic and/or biochemical basis underlying bacterial TeO32− toxicity is still poorly understood. This review traces the history of Te in its biological interactions, its enigmatic toxicity, importance in cellular oxidative stress, and interaction in cysteine metabolism.  相似文献   

2.
Four pot experiments are reported in which Norway spruce ( Picea abies (L.) Karst) seedlings, of different nutrient status, were treated with acid mist for one growing season in open-top chambers (OTCs). Combinations of H+, SO42−, NH4+ and NO3 were applied at different frequencies of application and supplying different doses of S and N kg ha−1. Plant growth, visible injury, frost hardiness and nutrient status were observed. These experiments were undertaken to improve our understanding of the interaction of environmental factors such as nutrition and mist-exposure frequency on seedling response to N and S deposition.
Both acidity (pH 2·7) and SO42− ions were necessary to induce visible injury. Mist containing SO42−, H+ and to a lesser extent NH4+ significantly reduced winter frost hardiness. Increasing the misting frequency, and to a lesser extent the overall dose, increased the likelihood of acid mist causing visible injury and reducing frost hardiness. Post-planting stress, low N status and needle juvenility increased the likelihood of acid mist causing visible injury. Increased plant vitality, adequate N status and growth rate reduced the likelihood of acid-mist-induced reductions in frost hardiness.
Principles underlying the responses of spruce seedlings treated in controlled conditions to acid mist are discussed.  相似文献   

3.
Abstract Newly developed low capacity columns were used in suppressed ion chromatography for rapid and highly reproducible determination of SO42− in porewater samples from freshwater sediments without preconcentration of samples. With a 50 μl injection the detection limit for SO42− was ca. 50 pmol (= 1 μ M) with a precision of 1–3% at the 10–200 μM level and <1% at concentrations above 200 μM. SO42− could be measured in 4–5 min with the routinely used eluent (3.0 mM NaHCO3/0.8 mM Na2CO3). When the strength of the eluent was increased to 3.0 mM NaHCO3/2.0 mM Na2CO3, sulfate analysis was possible in less than 3 min, provided that samples were nitrate-free. Under these conditions S2O32− could also be sensitively determined in about 6 min. Examples of application of the method are given for measurements of sulfate reduction rates in freshwater sediment samples from Lake Constance.  相似文献   

4.
Abstract: Different reduced sulfur compounds (H2S, FeS, S2O32−) were tested as electron donors for dissimilatory nitrate reduction in nitrate-amended sediment slurries. Only in the free sulfide-enriched slurries was nitrate appreciably reduced to ammonia (     ), with concomitant oxidation of sulfide to S0 (     ). The initial concentration of free sulfide appears as a factor determining the type of nitrate reduction. At extremely low concentrations of free S2− (metal sulfides) nitrate was reduced via denitrification whereas at higher S2− concentrations, dissimilatory nitrate reduction to ammonia (DNRA) and incomplete denitrification to gaseous nitrogen oxides took place. Sulfide inhibition of NO- and N2O- reductases is proposed as being responsible for the driving part of the electron flow from S2− to NH4+.  相似文献   

5.
Abstract.  An increase in egg size with embryonic development in stoneflies is believed to result from the uptake of water by osmosis. The present study aims to investigate whether a selective ion transport through egg membranes exists before hatching, and whether ions are released after hatching. Viable and nonviable egg masses are incubated in Petri dishes filled with water, and the concentrations of the ions F, Cl, SO42−, NO3, Na+, K, Mg2+ and Ca2+ in the water are determined. The ion transport of an egg mass before and after hatching and a nonviable egg mass is then calculated. Before hatching, Cl, SO42−, NO3, Na+, Mg2+ and Ca2+ are taken up from the surrounding water into the inner egg. These ions are selectively taken into the egg. After hatching, Cl, SO42−, Na+, Mg2+ and Ca2+ are released into the surrounding water. The amount of these ions released after hatching is lower than the amount taken up before hatching. Ions that are not released after hatching are considered to be used in embryonic development.  相似文献   

6.
Abstract— (1) Swelling of synaptosomes was measured spectrophotometrically by recording changes in extinction at 520 nm.
(2) Synaptosomes behaved as osmometers in NaCl solutions. When the tonicity of the medium was changed, synaptosome volume changed in accordance with Boyle and van't Hoff's Law. These changes were reversed on restoring the tonicity of the medium.
(3) The rate at which a solute entered the synaptosome was determined from the rate of swelling in the presence of that solute. Permeability of synaptosomes to non-electrolytes was in the order glucose ≪ glycerol < thiourea = formamide < propylene glycol = dimethylsulphoxide.
(4) Synaptosomes were freely permeable to ammonium and acetate ions and impermeable to Ca2+, Mg2+, PO42−, SO42− and oxalate ions.  相似文献   

7.
The effect of Na2SO4 concentrations from 0 to 17.6 m M in the nutrient solution of Lemna minor L. strain 6580 on adenosine 5'-phosphosulfate sulfotransferase activity was examined. Routinely, the plants were cultivated on 0.88 mA SO42−. The enzyme activity was increased by 50 to 100% after transfer to 0 or 0.0088 m M SO42−. Transfer back to 0.88 m M rapidly decreased the enzyme activity to the initial level. Cultivation on 17.6 mM Na2SO4 redueed extractable adenosine 5'-phosphosulfate sulfotransferase by 50%. The original level was rapidly re-established on 0,88 m M . In control experiments, a decrease in adenosine 5'-phosphosulfate sulfotransferase activity was also induced by K2 SO4, whereas NaCl caused a small increase. This indicates that the observed effects are dependent on the sulfate ion. ATP-sulfurylase activity measured for comparison was only significantly affected by the omission of sulfate, which induced a 20% increase, indicating that this enzyme activity from Lemna minor is less suseeptible to changes in medium sulfate than adenosine 5'-phosphosulfate sulfotransferase. A close relationship between adenosine 5'-phosphosulfate sulfotransferase activity and the content of asparagine, glutamine, non-protein thiols and sulfate in the tissue was detected, indicating a positive control mechanism induced by amides and a negative mechanism induced by thiols and sulfate.  相似文献   

8.
Bark beetles, especially Ips typographus L. represent a severe biotic threat for spruce ( Picea abies [L.] Karst.) at low altitudes in Europe. We compared sulphur (total S, SO42−, glutathione, cysteine, methionine), nitrogen (total N, NO3, total protein, free amino acids), carbon, total phosphorus and PO43−, tree vigour index (TVI) and water content of the phloem after felling, and their dependent changes (tdc) with the breeding success of I. typographus . Twenty trees were classified according to age (34/90 years) and crown density (high/intermediate/low). Water content was higher in young trees than in old trees, higher in the crown than at breast height, and decreased significantly within the 8-week study period. In old trees, breeding success, length of mother galleries and SO42− were significantly higher, while total protein, NO3 and water content were significantly lower than in young trees. Trees with intermediate crown density provided the best breeding success for I. typographus and had significantly higher arginine content and C/N ratio as well as low amounts of phosphate and glutamine. During the period of bark beetle breeding, total sulphur, glutathione, protein, NO3, aspartate, glutamine, glutamate, arginine and γ-aminobutyrate decreased significantly. The results support previous investigations that I. typographus develops best in physiologically weakened trees.  相似文献   

9.
Lahontan cutthroat trout thrive in saline-alkaline lakes, where other trout species often cannot survive. We examined Lahontan cutthroat trout from nine lakes in which salinity and alkalinity ranged from about 90 to 12 000 mg1−1 and 60 to 3500mgl−1 as HCO3 respectively, for sublethal histological changes in gill, kidney, and liver tissues. Gill chloride cell hyperplasia, gill lamellar epithelial separation, kidney glomerular swelling, blood congestion in kidneys, and deposition of hyalin droplets in kidney glomeruli, tubules, and hemopoietic tissues were the histological alterations statistically associated with differences in lakewater chemistry.
Deposition of hyalin in kidney tubules was the only histological change judged pathological and whose severity appeared sufficient to jeopardize normal organ function. Differences in lakewater chemistry explained nearly 90% of the variability observed in severity of tubular hyalin degeneration, and SO42− was the ion most positively correlated with increasing tubular hyalin. Our results suggest that Lahontan cutthroat trout will develop slight to moderate hyalin degeneration in kidney tubules if stocked into lakes where salinity and SO42− concentrations equal or exceed 5000 mgl−1 and 2000mgl−1, respectively.  相似文献   

10.
Abstract: Phospholipase A2 (PLA2) enzymes are critical regulators of prostaglandin and leukotriene synthesis, and they may also play an important role in the generation of intracellular free radicals. The group IV cytosolic form of phospholipase A2 (cPLA2) is regulated by changes in intracellular calcium concentration, and the enzyme preferentially acts to release arachidonic acid esterified at the sn -2 position of phospholipids. We examined the susceptibility of mice carrying a targeted mutation of the cPLA2 gene to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. Mutant mice have no functional cPLA2 activity. Mice that were homozygous for the mutation (cPLA2−/−) were significantly resistant to MPTP-induced dopamine depletion as compared with littermate control (cPLA2+/+) and heterozygous mice (cPLA2+/−). These findings provide evidence that cPLA2 plays a role in MPTP neurotoxicity and suggest that cPLA2 may play a role in the development of Parkinson's disease in humans.  相似文献   

11.
N-sufficient cells of Chlorella sorokiniana Shihira and Krauss, strain 211/8k, absorbed NH4+ under light plus CO2 conditions, when growth occurred, but not in darkness or in the absence of CO2, when growth was inhibited. N-sufficient cells subjected to conditions of N-starvation for a 24-h period showed a marked loss of photosynthetic activity. Upon supply of NH4+, N-starved cells sufflated with CO2 air exhibited a time-dependent recovery of photosynthetic activity, both when suspended in light and in darkness. By contrast, growth only occurred in cells suspended in light. N-starved cells absorbed NH4+ in darkness, but at a lower rate than in light. All of these data suggest that dark NH4+ uptake is driven by N assimilation to recover from N-starvation and that the light-dependent NH4+ uptake is driven by growth, being then influenced by conditions that affect recovery or growth. Unlike CO2 conditions, in a CO2-free atmosphere, absorption of NH4+ by N-starved cells occurred at a higher rate in darkness than in light. Accordingly, resumption of photosynthetic potential after NH4+ supply occurred in darkened cells, but not in illuminated cells. Respiratory activity of N-starved cells was enhanced up to 3-fold by NH4+ and 2-fold by methylammonium, with different patterns, suggesting that respiratory enzymes were affected by N-metabolism, especially through short-term control mechanisms triggered by the expenditure of metabolic energy involved in N-metabolism.  相似文献   

12.
Net fluxes of NH4+ and NO3 along adventitious roots of rice ( Oryza sativa L.) and the primary seminal root of maize ( Zea mays L.) were investigated under nonperturbing conditions using ion-selective microelectrodes. The roots of rice contained a layer of sclerenchymatous fibres on the external side of the cortex, whereas this structure was absent in maize. Net uptake of NH4+ was faster than that of NO3 at 1 mm behind the apex of both rice and maize roots when these ions were supplied together, each at 0·1 mol m–3. In rice, NH4+ net uptake declined in the more basal regions, whereas NO3 net uptake increased to a maximum at 21 mm behind the apex and then it also declined. Similar patterns of net uptake were observed when NH4+ or NO3 was the sole nitrogen source, although the rates of NO3 net uptake were faster in the absence of NH4+. In contrast to rice, rates of NH4+ and NO3 net uptake in the more basal regions of maize roots were similar to those near the root apex. Hence, the layer of sclerenchymatous fibres may have limited ion absorption in the older regions of rice roots.  相似文献   

13.
Abstract Denitrification rates were measured in sediments after the addition of different concentrations of FeS. A decrease of the denitrification rate was observed when high concentrations of ferrous iron (> 10 mM) were present. In the experiments with no significant concentrations of free Fe2+, the relationship between NO3 reduction and FeS concentration followed Michaelis and Menten kinetics. The maximum rate was 0.273 mmol l−1 d−1, 6 times as much as the basal rate 0.046 mmol l−1 d−1, which was attributed to organic matter; the Ks was 1.45 mM FeS. The stoichiometry of the overall reaction involving NO3 reduction and the concomitant S2− oxidation was also investigated. Measured ΔS/ΔN ratios ranged between 0.55 and 0.64, with ΣH2S + SO42− changing less than 10%. These values agree with the theoretically expected value of 0.56.  相似文献   

14.
Translocation of NH4+ was studied in relation to the expression of three glutamine synthetase (GS, EC 6.3.1.2) isogenes and total GS activity in roots and leaves of hydroponically grown oilseed rape ( Brassica napus ). The concentration of NH4+ in the stem xylem sap of NO3-fed plants was 0.55–0.70 m M , which was ≈60% higher than that in plants deprived of external nitrogen for 2 days. In NH4+-fed plants, xylem NH4+ concentrations increased linearly both with time of exposure to NH4+ and with increasing external NH4+ concentration. The maximum xylem NH4+ concentration was 8 m M , corresponding to 11% of the nitrogen translocated in the xylem. In the leaf apoplastic solution, the NH4+ concentration increased from 0.03 m M in N-deprived plants to 0.20 m M in N-replete plants. The corresponding values for leaf tissue water were 0.33 and 1.24 m M , respectively. The addition of either NO3 or NH4+ to N-starved plants induced both cytosolic gs isogene expression and GS activity in the roots. In N-replete plants, gs isogene expression and GS activity were repressed, probably due to carbon limitations, thereby protecting the roots against the excessive drainage of photosynthates. Repressed gs isogene expression and GS activity under N-replete conditions caused enhanced NH4+ translocation to the shoots.  相似文献   

15.
The appearance of soil NO3 after forest disturbance is commonly ascribed to a higher availability of NH4+ to autotrophic nitrifiers, or to a reduction in available-C resulting in lower microbial assimilation of NO3. Alternatively, it has been proposed that increasing NH4+ pools following disturbance could increase net nitrification by reducing microbial assimilation of NO3. Forest floor material was collected from shelterwood harvest plots which displayed both low available-C and low NH4+ pools, and where previous experiments had suggested the prevalence of heterotrophic nitrification. Subsamples were amended with incremental rates of glucose-C or NH4+, and gross NO3 transformation rates were measured by isotope dilution. Glucose-C additions had little effect on the net difference between gross NO3 production and consumption rates. On the other hand, NH4+ additions caused gross NO3 consumption processes to decrease sharply, while gross NO3 production processes remained constant. The results suggest that NH4+ can have an immediate positive effect on net nitrification rates by suppressing NO3 assimilation and uptake systems.  相似文献   

16.
Ratios of ammonium (NH4+) to nitrate (NO3) in soils are known to increase during forest succession. Using evidence from several previous studies, we hypothesize that a malfunction in NH4+ transport at the membrane level might limit the persistence of early successional tree species in later seral stages. In those studies, 13N radiotracing was used to determine unidirectional fluxes and pool sizes of NH4+ and NO3 in seedlings of the late-successional species white spruce ( Picea glauca ) and in the early successional species Douglas-fir ( Pseudotsuga menziesii var. glauca ) and trembling aspen ( Populus tremuloides ). At high external NH4+, the two early successional species accumulated excessive NH4+ in the root cytosol, and exhibited high-velocity, low-efficiency (15% to 22%), membrane fluxes of NH4+. In sharp contrast, white spruce had low cytosolic NH4+ accumulation, and lower-velocity but much higher-efficiency (65%), NH4+ fluxes. Because these divergent responses parallel known differences in tolerance and toxicity to NH4+ amongst these species, we propose that they constitute a significant driving force in forest succession, complementing the discrimination against NO3 documented in white spruce (Kronzucker et al. 1997).  相似文献   

17.
Cyanidium caldarium (Tilden) Geitler, a non-vacuolate unicellular alga, resuspended in medium flushed with air enriched with 5% CO2, assimilated NH4+ at high rates both in the light and in the dark. The assimilation of NO3, by contrast, was inhibited by 63% in the dark. In cell suspensions flushed with CO2-free air, NH4+ assimilation decreased with time both in the light and in the dark and ceased almost completely after 90 min. The addition of CO2 completely restored the capacity of the alga to assimilate NH4+. NO3 assimilation, by contrast, was 33% higher in the absence of CO2 and was linear with time. It is suggested that NO3 and NH4+ metabolism in C. caldarium are differently controlled in response to the light and carbon conditions of the cell.  相似文献   

18.
The activity of glutamine synthetase (GS) in mustard ( Sinapis alba L.) and Scots pine ( Pinus sylvestris L.) seedlings was used as an index to evaluate the capacity to cope with excessive ammonium supply. In these 2 species GS activity was differently affected by the application of nitrogen compounds (NH4+ or NO3). Mustard seedlings older than 5 days showed a considerable increase in GS activity after NH4+ or NO3 application. This response was independent of the energy flux, but GS activity in general was positively affected by light. Endogenous NH4+ did not accumulate greatly after nitrogen supply. In contrast, seedlings of Scots pine accumulated NH4+ in cotyledons and roots and showed no stimulation of GS activity after the application of ammonium. In addition, root growth was drastically reduced. Thus, the pine seedlings seem to have insufficient capacity to assimilate exogenously supplied ammonium. NO3, however, did not lead to any harmful effects.  相似文献   

19.
SUMMARY. 1. Time-course measurements of NH4+ and NO3uptake were made on the natural phytoplankton populations in a eutrophic lake at a time when these nutrients were at their lowest annual concentration.
2. Both NH4+ and NO3 uptake was increased at least five-fold during the first 5 min of incubation following near saturating pulses of these nutrients.
3. Elevated uptake was also observed following low level (∼2μg N 1−1) pulses of NH4+ and NO3, but substrate depletion during the first hour of incubation may have been partially responsible for this apparent enhancement.
4. Incorporation of I5N into TCA-insoluble material (protein) following the saturating NH4+ pulse was increased less than total cellular 15N uptake, whereas no elevation of 15N incorporation into protein was observed following a saturating NO3pulse.
5. The percentage of I5N incorporated into protein, with respect to total cellular uptake, was ∼32% and ∼12% for NH4+ and NO3, respectively, following 5 h of incubation.  相似文献   

20.
Germination and seedling growth of cotton: salinity-calcium interactions   总被引:8,自引:2,他引:6  
Abstract. The effects of NaCl salinity on germination and early seedling growth of cotton were studied. Germination was both delayed and reduced by 200 mol m−3 NaCl in the presence of a complete nutrient medium. Seedlings, 7–9 d old, were greatly reduced in fresh weight by salinity. The addition of supplemental Ca2+ (10 mol m−3 as SO42− or Cl) to the medium did not improve germination but, to a large degree, offset the reduction in root growth caused by NaCl. Roots growing in the high salt medium without supplemental Ca2+ appeared infected by microbes. The cation specificity of the beneficial Ca2+ effect on growth was ascertained by testing additions of MgSO4 or KCl to the NaCl treatments. The contents of K4 and Ca2+ were reduced in both roots and shoots by the NaCl treatments. Supplemental Ca2+ partially offset this effect for K4 in the roots and for Ca2+ in both roots and shoots. Sodium contents were not affected by the supplemental Ca2+. It is concluded that the beneficial effect of high Ca2+ concentrations on root growth of cotton seedlings in a saline environment may be due to maintenance of K/Na-selectivity and adequate Ca status in the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号