首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytically active isoenzymes of rat liver monoamine oxidase have been copurified from the outer mitochondrial membrane by a novel method involving repetitive solubilization with octyl-β-d-glucopyranoside followed by reconstitution into lipid vesicles. As analyzed using sodium dodecyl sulfate-gel electrophoresis, the purified enzyme migrates as a single band of protein of molecular weight 60,000. The preparation is capable of metabolizing 576 nmol serotonin and 777 nmol β-phenylethylamine/min/mg protein. Apparent Km values and sensitivity to the inhibitor clorgyline are very similar for the purified and outer mitochondrial membrane-bound enzyme when determined with the substrates β-phenylethylamine, serotonin, and tyramine.  相似文献   

2.
Mouse trophoblast is an invasive tissue that undergoes conversion to a noninvasive state during normal development. We examined the distribution of actin and myosin during trophoblast development in vitro with double label fluorescence microscopy using fluoresceinated subfragment-1 of myosin to identify actin and indirect immunofluorescence with rhodamine-conjugated antibody to detect myosin. During the outgrowth stage trophoblast spread as a sheet by active movement of the marginal cells. These cells exhibited different patterns of actin and myosin distribution in connection with lamellar extension and fiber formation. Marginal and submarginal cells were packed with overlapping layers of actin fibers, some of which were organized into a lattice that extended throughout the trophoblast. The cytoskeletal function of the fibers appeared to involve maintenance of the cells in a coherent sheet. Cessation of trophoblast spreading was associated with conversion of the cell sheet into a cell network. Cells stained more densely for actin and myosin and contained distinctive actomyosin condensations in the cortex and the cytoplasm. At the same time there was disorganization and then loss of the actin fiber system. These changes in actin and myosin distribution may be associated with mechanisms that control invasiveness by limiting trophoblast expansion.  相似文献   

3.
Following earlier observations on the retention of 5-hydroxytryptamine oxidizing activity by a purified preparation of monoamine oxidase from rat liver mitochondria, this fraction has been obtained in a water-soluble form by Triton X-100 gradient gel filtration and DEAE-Bio-Gel A chromatography. The soluble fraction appears to depend on Triton X-100 and phospholipids for its activity. The results seem to implicate membrane lipid components in the expression of rat liver mitochondrial monoamine oxidase activity.  相似文献   

4.
The interaction of putrescine dihydrochloride with glucose oxidase is reported. At pH 7.65 glucose oxidase is strongly anionic (Z = ?80). The pKa of an essential acidic group on the reduced form of the enzyme is extremely sensitive to ionic strength, as predicted by simple electrostatic theory [J. G. Voet, J. Coe, J. Epstein, V. Matossian, and T. Shipley (1981), Biochemistry, 20, 7182–7185]. Putrescine dihydrochloride was found to inhibit glucose oxidase at pH 7.65 at a constant ionic strength of 0.05. The kinetics do not obey simple competitive inhibition, however. The data can best be explained by a model in which change in the electrostatic potential of the enzyme on putrescine binding changes the observed pKa of the essential acidic group. The pH dependence of putrescine inhibition supports this interpretation. At I = 0.05, 5 mM putrescine was found to change the pKa of the essential acidic group from 7.6 to 7.1. The shift in the pKa as a function of putrescine concentration at pH 7.7 and I = 0.05 also supports the model presented. The Ka for putrescine to the active form of the enzyme was calculated to be 4.2 mm.  相似文献   

5.
Bovine liver mitochondrial monoamine oxidase was isolated in a more active state and in higher yields by an improved purification method which utilized β-mercaptoethanol and which contained several other important modifications. The subunit structure of the purified enzyme components was investigated by chemical and enzymatic methods. The subunit molecular weight of the three enzyme components isolated was estimated to be 52,000 by sodium dodecyl sulfate disc electrophoresis and by exclusion-diffusion chromatography on Biogel A-5m with 6 m guanidine HCl as the solvent. The number of peptides observed in the peptide map of the tryptic digest of the S-β-carboxymethylcysteine derivative of the enzyme also showed that the subunit molecular weight was about 52,000. Since it was previously reported that the monomer molecular weight of the enzyme was about 110,000, the active enzyme is made up of two subunits. The NH2-terminus of the enzyme of both subunits is blocked since Edman degradation and aminopeptidase failed to release an NH2-terminal amino acid. The COOH-terminal amino acid of both subunits was shown to be leucine by carboxypeptidase digestion of the enzyme since it was liberated quantitatively. From the FAD content of the enzyme and the subunit data, it is proposed that the enzyme probably consists of two subunits which differ possibly in that only one subunit contains 8-α-cysteinyl FAD.  相似文献   

6.
The kinetic mechanisms of the NAD- and NADP-linked reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides were examined using product inhibition, dead-end inhibition and alternate substrate experiments. The results are consistent with a steady-state random mechanism for the NAD-linked and an ordered, sequential mechanism with NADP+ binding first for the NADP-linked reaction. Thus, the enzyme can bind NADP+, NAD+, and glucose 6-phosphate, but the enzyme-glucose 6-phosphate complex can react only with NAD+, not with NADP+. This affects the rate equation for the NADP-linked reaction by introducing a term for a dead-end enzyme-glucose 6-phosphate complex. The kinetic mechanisms represent revisions of those proposed previously (C. Olive, M.E. Geroch, and H.R. Levy, 1971, J. Biol. Chem. 246, 2047-2057) and provide a kinetic basis for the regulation of coenzyme utilization of the enzyme by glucose 6-phosphate concentration (H.R. Levy, and G.H. Daouk, 1979, J. Biol. Chem. 254, 4843-4847) and NADPH/NADP+ concentration ratios (H.R. Levy, G.H. Daouk, and M.A. Katopes, 1979, Arch, Biochem. Biophys. 198, 406-413). The kinetic mechanisms were found to be the same at pH 6.2 and pH 7.8. The kinetics of ATP inhibition of the NAD- and NADP-linked reactions were examined at pH 6.2 and pH 7.8. The results are interpreted in terms of ATP addition to binary enzyme-coenzyme and enzyme-glucose 6-phosphate complexes.  相似文献   

7.
8.
9.
A radioimmunoassay for sulfhydryl oxidase, a membrane enzyme, was developed using antibodies raised to the bovine milk enzyme which had been purified by transient covalent affinity chromatography on a cysteinylsuccinamidopropyl-glass matrix. Bovine milk sulfhydryl oxidase and bovine kidney sulfhydryl oxidase (“glutathione oxidase”) appear to be immunologically identical as evidenced by parallel responses in radioimmunoassays. Antibodies raised to the purified milk sulfhydryl oxidase can immunoprecipitate glutathione oxidase activity, but not γ-glutamyltransferase (“transpeptidase”) activity, from bovine kidney preparations.  相似文献   

10.
The solubilization of canine cardiac and hepatic β-adrenergic receptors was characterized with 19 different ionic and nonionic surfactants and surfactant combinations. The effects of alterations in the hydrophobic and hydrophilic moieties of the nonpolar detergents were examined in relation to their efficacy in solubilizing these receptor molecules. Within this group of surfactants the more effective agents contained an average of 9–10 polyoxyethylene units per molecule. The best degree of β-receptor solubilization for both heart and liver was obtained with 1% Brij 96 or a combination of 1% digitonin with 0.25% Triton X-100. Hepatic but not cardiac β-receptors were solubilized by polyoxyethylene ether W-1 or by Triton X-100. Solubilization time courses indicated that the maximum degree of receptor solubilization occurred within 5 min at 0–4 °C. Solubilization temperatures were varied from 0 to 37 °C. Temperatures up to 30 °C increased numbers of cardiac receptors solubilized by 30% over those obtained at 0 °C. The same temperature changes had no significant effects on liver β-receptor solubilization. Increasing the solubilization temperature to 37 °C decreased the detectable number of β-receptors by 91 (liver) and 72% (heart). β-Receptors solubilized in the absence of receptor ligand were extremely labile with a half-life on the order of 90 min at 4 °C for both heart and liver. Occupation of the receptors by [125I]-iodohydroxybenzylpindolol prior to solubilization conferred a certain degree of stability on the receptors.  相似文献   

11.
The kinetic mechanism of homoserine kinase, purified to homogeneity from Escherichia coli, was examined by initial velocity techniques at pH 7.6. Whereas ATP displayed normal Michaelis-Menten saturation kinetics (Km = 0.2 mM), L-homoserine showed hyperbolic saturation kinetics only up to a concentration of 0.75 mM (Km = 0.15 mM). Above this concentration, L-homoserine caused marked but partial inhibition (Ki approximately 2 mM). The kinetic data indicated that the addition of substrates to homoserine kinase occurs by a preferred order random mechanism, with ATP preferentially binding before L-homoserine. When the ATP concentration was varied at several fixed inhibitory concentrations of L-homoserine, the resulting inhibition pattern indicated hyperbolic mixed inhibition. This suggested a second binding site for L-homoserine. L-Aspartate semialdehyde, an amino acid analog of L-homoserine, proved to be an alternative substrate of homoserine kinase (Km = 0.68 mM), and was subsequently used as a probe of its kinetic mechanism. In aqueous solution, at pH 7.5, this analog was found to exist predominantly (ca 85%) as its hydrated species. When examined as an inhibitor of the physiological reaction, L-aspartate semialdehyde showed mixed inhibition versus both L-homoserine and ATP. Although the pH profiles for the binding of L-homoserine as a substrate (Km) and as an inhibitor (Ki) were identical, the kinetic data were best fit to a two-site model, with separate catalytic and inhibitory sites for L-homoserine.  相似文献   

12.
13.
The inhibition of acetylcholinesterase by arsenite and fluoride   总被引:1,自引:0,他引:1  
The effect of fluoride on the rate of reaction of acetylcholinesterase with arsenite, on the rate of dissociation of the enzyme-arsenite complex, and on the equilibrium between enzyme and arsenite was studied. Fluoride decreases the rate of the reaction between acetylcholinesterase and arsenite and changes the apparent equilibrium dissociation constant between the enzyme and arsenite, but even at concentrations as high as 0.2 M has no effect on the rate of dissociation of the enzyme-arsenite complex. The binding of fluoride and arsenite with the enzyme is highly anticooperative and may well be mutually exclusive. These results are consistent with a model in which the binding sites overlap and in which the same functional groups are involved.  相似文献   

14.
Glyoxylate thiohemiacetal formation constants (defined as the concentration of thiohemiacetal divided by the concentration of thiol and the total concentration of hydrated and unhydrated glyoxylate) were determined at 25°C and pH 7.4 for a variety of thiols using two independent methods, and were found to be in the range of 0.2 to 1.7 mm?1. Under the same conditions the hydration constant for glyoxylate (defined as the concentration of the hydrate divided by the concentration of the free aldehyde) was determined to be 163 ± 7. This information is used in conjunction with kinetic data to calculate kinetic constants for the oxidation of the thiohemiacetals by O2 catalyzed by rat kidney l-hydroxy acid oxidase. The results further indicate that several such thiohemiacetals are excellent substrates, and suggest that one or more of them may be the physiological reactant for this enzyme.  相似文献   

15.
Calf brain membranes have been shown to enzymatically dephosphorylate endogenous and partially purified, exogenous dolichyl [32P]monophosphate. The properties and specificity of the dolichyl monophosphatase activity have been studied by following the release of [32P]phosphate from exogenous dolichyl [32P]monophosphate added in a dispersion with Triton X-100. The calf brain phosphatase (1) is inhibited by Mn2+, Mg2+, Ca2+, fluoride, and phosphate; (2) exhibits a neutral pH optimum; and (3) has an apparent Km of 200 μm for dolichyl monophosphate. Dolichyl monophosphatase activity can be distinguished from phosphatidate phosphatase on the basis of their responses to fluoride and phosphate. Based on differential thermolability and the effects of divalent cations and EDTA, the calf brain dolichyl monophosphatase can also be discriminated from the general phosphatase activity assayed with p-nitrophenyl phosphate. Dolichyl monophosphatase activity can be solubilized by treating microsomes with Triton X-100. The enzymatic dephosphorylation of exogenous dolichyl [32P]monophosphate catalyzed by particulate and detergent-solubilized preparations is negligibly affected by equimolar concentrations of ATP and an assortment of phosphomonoesters, including phosphatidic acid and hexadecyl phosphate. A reduction of approximately 40% in dolichyl monophosphatase activity is observed in the presence of equimolar amounts of retinyl monophosphate. Overall, these results represent good evidence for the presence of a neutral polyisoprenyl monophosphatase in central nervous tissue.  相似文献   

16.
Gangliosides suppress lymphocyte mitogenesis when added exogenously to the cells. On the premise that the mechanism of ganglioside action may be an interference with primary induction events, mitogen-induced 45Ca2+ influx in murine lymphocytes was studied. Disialoganglioside (GD1a) at physiopathological concentrations inhibits concanavalin A-induced 45Ca2+ uptake as well as blast transformation. The suppressive action of GD1a is both concentration dependent (50% suppression at 13 microM) and very rapid (within 1 min). GD1a is not cytotoxic nor does it significantly alter the rate of Ca2+ efflux. The uptake studies were extended to A23187, a compound with mitogenic and specific divalent cation ionophore activities. Ca2+ uptake by lymphoid cells from AKR/J, Swiss, and CBA mice is stimulated by A23187; and GD1a, in a dose-dependent manner, inhibits the ionophore-induced 45Ca2+ influx. Pretreatment of thymocytes with GD1a renders the cells greatly insensitive to the subsequent ionophore activity of A23187. The results suggest that exogenous gangliosides may function as an inhibitor of some of the mitogen-triggered early events, including Ca2+ metabolism, and thus influence the immunological behavior of intact lymphoid cells.  相似文献   

17.
The effect of spermidine on endonuclease inhibition by agarose contaminants   总被引:10,自引:0,他引:10  
A simple method for the determination of molecular weight and effective size of proteins is proposed. The procedure consists in comparison of sedimentation coefficients of reversed micelles of aerosol OT in octane in the presence and in the absence of solubilized protein.  相似文献   

18.
Ribonuclease from bovine pancreas has been solubilized in n-octane containing the surfactant di(2-ethyl-hexyl) sodium sulfo-succinate (50 mM) and water (0.55–0.94 M). It is shown that enzymatic activity with cytidine-2′:3′-phosphate and RNA is maintained in the hydrocarbon phase, and that under certain conditions it is even higher than in water solution. Absorption properties and circular dichroism of the enzyme and substrates in this new environment are investigated and compared with those in water solution.  相似文献   

19.
The acylation of sn-glycerol 3-phosphate with palmityl-CoA was compared in mitochondria and microsomes isolated from rat liver. Polymyxin B, an antibiotic known to alter bacterial membrane structure, stimulated the mitochondrial glycerophosphate acyltransferase but inhibited the microsomal enzyme. When mitochondrial and microsomal fractions were incubated at 4–6 °C for up to 4 h, the mitochondrial enzyme remained virtually unchanged while the microsomal enzyme lost about one-half of its activity. Incubations at higher temperatures also revealed that the mitochondrial enzyme was comparatively more stable under the conditions employed. The mitochondrial acyltransferase showed no sensitivity to bromelain, papain, Pronase, and trypsin, all of which strongly inhibited the microsomal enzyme. The differential sensitivity to trypsin was observed in mitochondria and microsomes isolated from other rat organs. However, the liver mitochondrial glycerophosphate acyltransferase was inhibited by trypsin in the presence of either 0.05% deoxycholate or 0.1% Triton X-100. The trypsin sensitivity of the mitochondrial glycerophosphate acyltransferase in the presence of detergent was not due to the presence, in the mitochondrial fraction, of a trypsin inhibitor which became inactivated by Triton X-100 or deoxycholate. The results suggest that the catalytic site of mitochondrial glycerophosphate acyltransferase is not exposed to the cytosolic side and it is located in the inner aspect of the outer membrane.  相似文献   

20.
The effects of centrophenoxine, SaH-42-348, and DH-990 on several enzymes involved in aminophospholipid biosynthesis in brain have been examined in vitro. Relatively high concentrations of centrophenoxine were required to achieve 50% inhibition of the microsomal enzymes CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase (EPT), CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), phosphatidyl-N-methylethanolamine N-methyltransferase (PME-NMT), and phosphatidyl-N,N-dimethylethanolamine N-methyltransferase (PDE-NMT). Intermediate concentrations of SaH-42-348 inhibited CPT (IC50 = 2.0 mM), EPT (IC50 = 1.9 mM), PME-NMT (IC50 = 0.19 mM), and PDE-NMT (IC50 = 0.17 mM). Of the three drugs tested, DH-990 was the most potent inhibitor of the phospholipid-synthesizing enzymes. Phosphatidylserine decarboxylase, a mitochondrial inner-membrane enzyme [A. K. Percy, J. F. Moore, M. A. Carson, and C. J. Waechter (1983) Arch. Biochem. Biophys. 223, 484-494], was virtually unaffected by the three drugs added at millimolar concentrations. Kinetic analyses indicated that the inhibitory action of DH-990 on the brain enzymes was noncompetitive with respect to all substrates. The relatively high sensitivity of CPT (IC50 = 0.6 mM), EPT (IC50 = 2.2 mM), PME-NMT (IC50 = 2.5 microM), and PDE-NMT (IC50 = 2.5 microM) to inhibition by DH-990 in brain microsomes suggests that this compound may be useful for cellular studies on the possible relationships between phospholipid metabolism and neurobiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号