首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sample of 106 wild forms and 99 landraces of common bean (Thaseolus vulgaris) from Middle America and the Andean region of South America were screened for variability in phaseolin seed protein using one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and two-dimensional isoelectric focusing SDS/PAGE. The Middle American wild forms exhibited phaseolin patterns similar to the ‘S’ pattern described previously in cultivated forms, as well as a wide variety of additional banding patterns—‘M’ (Middle America) types—not encountered among common bean cultivars. The Andean wild forms showed only the ‘T’ phaseolin pattern, also described previously among cultivated forms. Landraces from Middle America showed ‘S’ or ‘S’-like patterns with the exception of 2 lines with ‘T’ phaseolin. In Andean South America, a majority of landraces had the ‘T’ phaseolin. Additional types represented in that region were (in decreasing order of frequency) the ‘S’ and ‘C’ types (already described among cultivated forms) as well as the ‘H’ (Huevo de huanchaco) and ‘A’ (Ayacucho), (new patterns previously undescribed among wild and cultivated beans). In each region—Middle America and Andean South America—the seeds of landraces with ‘T’ phaseolin were significantly larger than those of landraces with ‘S’ phaseolin. No significant differences in seed size were observed among landraces with ‘T,’ ‘C,’ ‘H,’ and ‘A’ phaseolin types of the Andean region. Our data favor 2 primary areas of domestication, one in Middle America leading to small-seeded cultivars with ‘S’ phaseolin patterns and the other in the Andes giving rise to large-seeded cultivars with ‘T’ (and possibly ‘C,’ ‘H,’ and ‘A’) phaseolin patterns.  相似文献   

2.
The host suitability of diverse races and gene pools of common bean (Phaseolus vulgaris) for multiple isolates of Heterodera glycines was studied. Twenty P. vulgaris genotypes, representing three of the six races within the two major germplasm pools, were tested in greenhouse experiments to determine their host suitability to five H. glycines isolates. Phaseolus vulgaris genotypes differed in their host suitability to different H. glycines isolates. While some common bean lines were excellent hosts for some H. glycines isolates, no common bean line was a good host for all isolates. Some bean lines from races Durango and Mesoamerica, representing the Middle America gene pool, were resistant to all five nematode isolates. Other lines, from both the Andean and Middle America gene pools, had differential responses for host suitability to the different isolates of H. glycines.  相似文献   

3.
Archaeological maize specimens from Andean sites of southern South America, dating from 400 to 1400 years before present, were tested for the presence of ancient DNA and three microsatellite loci were typed in the specimens that gave positive results. Genotypes were also obtained for 146 individuals corresponding to modern landraces currently cultivated in the same areas and for 21 plants from Argentinian lowland races. Sequence analysis of cloned ancient DNA products revealed a high incidence of substitutions appearing in only one clone, with transitions prevalent. In the archaeological specimens, there was no evidence of polymorphism at any one of the three microsatellite loci: each exhibited a single allelic variant, identical to the most frequent allele found in contemporary populations belonging to races Amarillo Chico, Amarillo Grande, Blanco and Altiplano. Affiliation between ancient specimens and a set of races from the Andean complex was further supported by assignment tests. The striking genetic uniformity displayed by the ancient specimens and their close relationship with the Andean complex suggest that the latter gene pool has predominated in the western regions of southern South America for at least the past 1400 years. The results support hypotheses suggesting that maize cultivation initially spread into South America via a highland route, rather than through the lowlands.  相似文献   

4.
Studies of South American biodiversity have identified several areas of endemism that may have enhanced historical diversification of South American organisms. Hypotheses concerning the derivation of birds in the Chocó area of endemism in northwestern South America were evaluated using protein electrophoretic data from 14 taxonomically diverse species groups of birds. Nine of these groups demonstrated that the Chocó area of endemism has a closer historical relationship to Central America than to Amazonia, a result that is consistent with phytogeographic evidence. Within species groups, genetic distances between cis-Andean (east of the Andes) and trans-Andean (west of the Andes) taxa are, on average, roughly twice that between Chocó and Central American taxa. The genetic data are consistent with the hypotheses that the divergence of most cis-Andean and trans-Andean taxa was the result of either the Andean uplift fragmenting a once continuous Amazonian-Pacific population (Andean Uplift Hypothesis), the isolation of the two faunas in forest refugia on opposite sides of the Andes during arid climates (Forest Refugia Hypothesis), or dispersal of Amazonian forms directly across the Andes into the trans-Andean region (Across-Andes Dispersal Hypothesis). Disentangling these hypotheses is difficult due to the complexity of the Andean uplift and to the scant geologic and paleoclimatic information that elucidates diversification events in northwestern South America. Regarding the divergence of cis- and trans-Andean taxa, the genetic, geologic, and paleoclimatic data allow weak rejection of the Andean Uplift Hypothesis and weak support for the Forest Refugia and Andean Dispersal Hypotheses. The subsequent diversification of Chocó and Central American taxa was the result of Pleistocene forest refugia, marine transgressions, or parapatric speciation.  相似文献   

5.
Because of the economic importance of maize and its scientific importance as a model system for studies of domestication, its evolutionary history is of general interest. We analyzed the population genetic structure of maize races by genotyping 964 individual plants, representing almost the entire set of ~350 races native to the Americas, with 96 microsatellites. Using Bayesian clustering, we detected four main clusters consisting of highland Mexican, northern United States (US), tropical lowland, and Andean races. Phylogenetic analysis indicated that the southwestern US was an intermediary stepping stone between Mexico and the northern US. Furthermore, southeastern US races appear to be of mixed northern flint and tropical lowland ancestry, while lowland middle South American races are of mixed Andean and tropical lowland ancestry. Several cases of post-Columbian movement of races were detected, most notably from the US to South America. Of the four main clusters, the highest genetic diversity occurs in highland Mexican races, while diversity is lowest in the Andes and northern US. Isolation by distance appears to be the main factor underlying the historical diversification of maize. We identify highland Mexico and the Andes as potential sources of genetic diversity underrepresented among elite lines used in maize breeding programs.  相似文献   

6.
This study examines a genome‐wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan‐Paezan and Equatorial‐Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan‐Paezan populations in Central America emerge together at the tips of the Chibchan‐Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan‐Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial‐Tucanoan and Ge‐Pano‐Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
V L Velasquez  P Gepts 《Génome》1994,37(2):256-263
Eighty-five wild and cultivated accessions of common bean (Phaseolus vulgaris L.), representing a wide geographic area in the centres of domestication were tested for restriction fragment length polymorphisms (RFLPs). Genomic DNA was digested with one of three restriction enzymes (EcoRI, EcoRV, and HindIII) and hybridized to 12 probes distributed throughout the common bean genome. Accessions could be classified into two major groups with a distinct geographical distribution in Middle America and the Andes. Within each gene pool, cultivated accessions clustered together with wild forms from the same geographical area supporting the multiple domestications hypothesis for this crop. Estimates of Nei's genetic distances among the cultivated races from the two different gene pools varied from 0.12 to 0.56 and among races from the same gene pool from 0.04 to 0.12, suggesting that the divergence in Phaseolus vulgaris has reached the subspecies level. The level of genetic diversity (Ht = 0.38) was twice the value obtained with isozyme analysis. Genetic diversity within races (Hs = 0.27) was four to five times higher compared with isozymes, but genetic diversity between races (Dst = 0.11) was similar for both categories of markers. These results corroborate previous studies on the characterization of genetic diversity in common bean that clearly showed two distinct gene pools, Middle American and Andean. Moreover, RFLP markers are superior to isozymes because they provide better coverage of the genome and reveal higher level of polymorphisms.  相似文献   

8.
Glyptodon and Glyptotherium represent the most conspicuous taxa of late Neogene and Pleistocene glyptodonts in South America and North America, respectively. The earliest records of Glyptodon in South America are 1.07 Ma (late early Pleistocene, Calabrian), although the possibility that “Paraglyptodon uquiensis” represents a Pliocene specimen of Glyptodon cannot be rejected. Glyptotherium originated from South American ancestry in northern South America or Central America about 3.9 Ma (early late Pliocene, Zanclean) or earlier. The diversity of South American Glyptodon is currently under study, but preliminary evidence would indicate that no more than three species (G. munizi, G. elongatus and G. reticulatus) are valid, plus a possible new Andean species. In turn, according to the updated taxonomy proposed herein, Glyptotherium includes two chronospecies. The earliest species, Gl. texanum, differs only slightly from the latest species, Gl. cylindricum. The relationship of Glyptodon and Glyptotherium has been problematical since the discovery of the North American lineage, at first identified as various species of Glyptodon and later considered a separate genus. Glyptodon is recognized as a natural group and recent taxonomic and phylogenetic revisions place all North American glyptodontines into Glyptotherium. In this paper, we propose a detailed morphological comparison between the southern South American species of Glyptodon and Glyptotherium in order to identify diagnostic differences and potential synapomorphies. Both genera can be distinguished mainly by differences in the skull, mandible, dentition, dorsal carapace, and caudal armor, Glyptodon being somewhat larger than Glyptotherium. Both clades show a highly conservative evolution, which could be interpreted as an anagenesis. The scarce records of glyptodonts in Central America show more morphological affinity with Glyptotherium than with Glyptodon.  相似文献   

9.
The taxonomic history of South American Gomphotheriidae is very complex and controversial. Three species are currently recognized: Amahuacatherium peruvium, Cuvieronius hyodon, and Notiomastodon platensis. The former is a late Miocene gomphothere whose validity has been questioned by several authors. The other two, C. hyodon and N. platensis, are Quaternary taxa in South America, and they have distinct biogeographic patterns: Andean and lowland distributions, respectively. South American gomphotheres became extinct at the end of the Pleistocene. We conducted a phylogenetic analysis of Proboscidea including the South American Quaternary gomphotheres, which resulted in two most parsimonious trees. Our results support a paraphyletic Gomphotheriidae and a monophyletic South American gomphothere lineage: C. hyodon and N. platensis. The late Miocene gomphothere record in Peru, Amahuacatherium peruvium, seems to be a crucial part of the biogeography and evolution of the South American gomphotheres.  相似文献   

10.
Our goal was to investigate in more detail wild and cultivated common bean (Phaseolus vulgaris) accessions from northwestern South America (Colombia, Ecuador, and northern Peru) because prior research had shown this region to be the meeting place of the two major gene pools (Middle American and Andean) of common bean. Explorations were conducted in these countries to collect additional materials not represented in germplasm collections. It was possible to identify wild common bean populations in Ecuador and northern Peru, where they had never been described before. In addition, we were able to extend the distribution of wild common bean in Colombia beyond what was known prior to this study. In all areas, the wild common bean habitat had suffered severely from destruction of natural vegetation. In Colombia, wild common beans were found on the Eastern slope of the Andes (in continuation of its distribution in Venezuela), whereas in Ecuador and northern Peru they were found on the western slope of this mountain range. This geographic distribution was correlated with an ecological distribution in relatively dry environments with intermediate temperatures (known as “dry mountain forest”). Isozyme andphaseolin seed protein analyses of the northern Peruvian and Ecuadoran wild populations showed that they were intermediate between the Middle American and Andean gene pools of the species. Phaseolin analyses conducted on landraces of the Upper Magdalena Valley in Colombia showed that Andean domesticates were grown at a higher altitude than Middle American domesticates suggesting that the former are adapted to cooler temperatures. Our observations and results have the following consequences for the understanding and conservation of genetic diversity in common bean and other crops: 1) Our understanding of the distribution of the wild relative of common bean (and other crops) is imperfect and further explorations are needed to more precisely identify and rescue wild ancestral populations; 2) For crops for which the wild ancestor has not yet been identified, it may be worthwhile to conduct additional explorations in conjunction with genetic diversity studies at the molecular level to guide the explorations; 3) Our study shows the benefit for more efficient germplasm conservation which can be derived from the dynamic interplay between field explorations (and other conservation operations) and molecular analyses to determine genetic distances and diversities; 4) The intermediate materials identified in northern Peru and Ecuador may have basic importance to understand the origin of the common bean and an applied role as a bridge between the Middle American and Andean gene pools; and 5) The differential adaptation to temperature of the two major cultivated gene pools may help breeders select genotypes based at least partially on their evolutionary origin.  相似文献   

11.
Wild common bean (Phaseolus vulgaris L.) is distributed throughout the Americas from Mexico to northern Argentina. Within this range, the species is divided into two gene pools (Andean and Middle American) along a latitudinal gradient. The diversity of 24 wild common bean genotypes from throughout the geographic range of the species was described by using sequence data from 13 loci. An isolation–migration model was evaluated using a coalescent analysis to estimate multiple demographic parameters. Using a Bayesian approach, Andean and Middle American subpopulations with high percentage of parentages were observed. Over all loci, the Middle American gene pool was more diverse than the Andean gene pool (πsil=0.0089 vs 0.0068). The two subpopulations were strongly genetically differentiated over all loci (Fst=0.29). It is estimated that the two current wild gene pools diverged from a common ancestor ∼111 000 years ago. Subsequently, each gene pool underwent a bottleneck immediately after divergence and lasted ∼40 000 years. The Middle American bottleneck population size was ∼46% of the ancestral population size, whereas the Andean was 26%. Continuous asymmetric gene flow was detected between the two gene pools with a larger number of migrants entering Middle American gene pool from the Andean gene pool. These results suggest that because of the complex population structure associated with the ancestral divergence, subsequent bottlenecks in each gene pool, gene pool-specific domestication and intense selection within each gene pool by breeders; association mapping would best be practised within each common bean gene pool.  相似文献   

12.
A New World assemblage of tetraploid Chenopodium species (section Chenopodium, subsection Cellulata) includes two domesticates, C. quinoa of Andean South America and C. nuttalliae of Mexico. Both have been combined into a single species and the Mexican form has been considered as a possible derivative of C. quinoa. The domesticates and related, sympatric weed forms, C. berlandieri of North America and C. hircinum of the Andes, were examined for variation in morphological and biochemical characteristics and also were included in a program of artificial hybridization. Results indicate that the domesticated forms are more closely related to their sympatric weeds than to each other. The Mexican cultigen is placed as a subspecies of C. berlandieri, the taxon from which it most likely evolved under human selection in North America. Possible origins for the Andean weed-crop complex are considered. Southward migration of a North American tetraploid appears to be more likely than independent allotetraploidy in South America. Of the North American tetraploids examined, C. berlandieri var. zschackei of the western U.S. shows closest affinities to the Andean complex.  相似文献   

13.
Modern races of maize (Zea mays L.) are characterized by indurated glume and rachis tissues. The archaeological record, as well as experimental studies indicate that in North America this induration is associated with hybridization between domesticated maize and its closest wild relative Z. mays subsp. mexicana (Schrad.) Iltis (teosinte). Similar induration can also be introduced into maize through introgression from Tripsacum. North and South American indurated races of maize are not all closely allied morphologically. They evolved independently under domestication. Teosinte is absent from South America, but Tripsacum is widely sympatric with maize from about 42 N to 42 S latitude. For these reasons it has been postulated that induration in South American races may be the result of Tripsacum introgression. However, barriers restricting gene exchange between Zea and Tripsacum are difficult to overcome in nature. It is maintained that indurated South American races of maize were derived from indurated Mexican races, and that the presence or absence of such induration is due to different degrees of expression by intermediate alleles of the tunicate locus.  相似文献   

14.
15.
Progress in bean breeding programs requires the exploitation of genetic variation that is present among races or through introgression across gene pools of Phaseolus vulgaris L. Of the two major common bean gene pools, the Andean gene pool seems to have a narrow genetic base, with about 10% of the accessions in the CIAT core collection presenting evidence of introgression. The objective of this study was to quantify the degree of spontaneous introgression in a sample of common bean landraces from the Andean gene pool. The effects of introgression on morphological, economic and nutritional attributes were also investigated. Homogeneity analysis was performed on molecular marker data from 426 Andean-type accessions from the primary centres of origin of the CIAT common bean core collection and two check varieties. Quantitative attribute diversity for 15 traits was studied based on the groups found from the cluster analysis of marker prevalence indices computed for each accession. The two-group summary consisted of one group of 58 accessions (14%) with low prevalence indices and another group of 370 accessions (86%) with high prevalence indices. The smaller group occupied the outlying area of points displayed from homogeneity analysis, yet their geographic origin was widely distributed over the Andean region. This group was regarded as introgressed, since its accessions displayed traits that are associated with the Middle American gene pool: high resistance to Andean disease isolates but low resistance to Middle American disease isolates, low seed weight and high scores for all nutrient elements. Genotypes generated by spontaneous introgression can be helpful for breeders to overcome the difficulties in transferring traits between gene pools.Communicated by H.C. Becker  相似文献   

16.
The uplift of the Andes was a major factor for plant diversification in South America and had significant effects on the climatic patterns at the continental scale. It was crucial for the formation of the arid environments in south-eastern and western South America. However, both the timing of the major stages of the Andean uplift and the onset of aridity in western South America remain controversial. In this paper we examine the hypothesis that the Andean South American groups of Heliotropium originated and diversified in response to Andean orogeny during the late Miocene and a the subsequent development of aridity. To this end, we estimate divergence times and likely biogeographical origins of the major clades in the phylogeny of Heliotropium, using both Bayesian and likelihood methods. Divergence times of all Andean clades in Heliotropium are estimated to be of late Miocene or Pliocene ages. At least three independent Andean diversification events can be recognized within Heliotropium. Timing of the diversification in the Andean lineages Heliotropium sects.Heliothamnus, Cochranea, Heliotrophytum, Hypsogenia, Plagiomeris, Platygyne clearly correspond to a rapid, late Miocene uplift of the Andes and a Pliocene development of arid environments in South America.  相似文献   

17.
The woodpecker genus Colaptes (flickers) has its highest diversity in South America and the closely related genus Piculus is restricted to South and Central America. Two species of flickers occur in North America, and one species is endemic to Cuba. We conducted a Bayesian phylogenetic analysis of three mitochondrial encoded genes (cyt b, COI, 12S rRNA) and confirmed that the two genera are paraphyletic. Three species historically classified as Piculus are actually flickers. We found that the Cuban endemic C. fernandinae is the most basal species within the flickers and that the Northern Flicker is the next most basal species within the Colaptes lineage. The South American clade is most derived. The age of the South American diversification is estimated to be 3.6 MY, which is synchronous with the emergence of the Isthmus of Panama. The pattern of diversification of South American flickers is common among South American woodpeckers. Although woodpeckers have their greatest diversity in South America, we hypothesize that woodpeckers (Family Picidae) originated in Eurasia, dispersed to North America via the Bering land bridge, and multiple lineages entered South America as the Isthmus approached its final closing.  相似文献   

18.
Aim  A panbiogeographical analysis of the genus Bomarea was undertaken in order to determine generalized tracks and biogeographical nodes, and to evaluate the current distribution of the genus based on the available tectonic information and the biogeographical regionalization of Latin America.
Location  The Neotropical region from northern Mexico to northern Argentina, and the Nearctic and Andean regions.
Method  A total of 2205 records of 101 species were analysed, representing 95% of the species assigned to Bomarea . Localities were represented on maps and their individual tracks were drawn. Based on their comparison, generalized tracks were detected and mapped. Nodes were identified in the areas where different generalized tracks were superimposed.
Results  Five generalized tracks were recovered. One is located in the Eastern Central America and Western Panamanian Isthmus provinces (Caribbean subregion, Neotropical region), which was supported by three species of Central American distribution. The four remaining generalized tracks were located in South America, in the North Andean Paramo, Cauca and Puna biogeographical provinces. These tracks were supported by species of Bomarea with an Andean distribution. Biogeographical nodes were established in the Central Andean region of Colombia, central Ecuador and central Peru.
Main conclusions  The nodes obtained for Bomarea support a hybrid origin for the Andean region, which presents diverse components from both northern and southern South America. Likewise, the track recovered between Colombia and Ecuador includes Andean and Neotropical areas, providing further support for this hypothesis. The nodes obtained are coherent with vicariant elements evident for Bomarea. Species of three clades proposed for Bomarea are distributed in specific generalized tracks.  相似文献   

19.
The long-term isolation of South America during most of the Cenozoic produced a highly peculiar terrestrial vertebrate biota, with a wide array of mammal groups, among which caviomorph rodents and platyrrhine primates are Mid-Cenozoic immigrants. In the absence of indisputable pre-Oligocene South American rodents or primates, the mode, timing and biogeography of these extraordinary dispersals remained debated. Here, we describe South America's oldest known rodents, based on a new diverse caviomorph assemblage from the late Middle Eocene (approx. 41 Ma) of Peru, including five small rodents with three stem caviomorphs. Instead of being tied to the Eocene/Oligocene global cooling and drying episode (approx. 34 Ma), as previously considered, the arrival of caviomorphs and their initial radiation in South America probably occurred under much warmer and wetter conditions, around the Mid-Eocene Climatic Optimum. Our phylogenetic results reaffirm the African origin of South American rodents and support a trans-Atlantic dispersal of these mammals during Middle Eocene times. This discovery further extends the gap (approx. 15 Myr) between first appearances of rodents and primates in South America.  相似文献   

20.
Mitochondrial DNA and the peopling of South America   总被引:1,自引:0,他引:1  
The initial peopling of South America is largely unresolved, in part because of the unique distribution of genetic diversity in native South Americans. On average, genetic diversity estimated within Andean populations is higher than that estimated within Amazonian populations. Yet there is less genetic differentiation estimated among Andean populations than estimated among Amazonian populations. One hypothesis is that this pattern is a product of independent migrations of genetically differentiated people into South America. A competing hypothesis is that there was a single migration followed by regional isolation. In this study we address these hypotheses using mtDNA hypervariable region 1 sequences representing 21 South American groups and include new data sets for four native Peruvian communities from Tupe, Yungay, and Puno. An analysis of variance that compared the combined data from western South America to the combined data from eastern South America determined that these two regional data sets are not significantly different. As a result, a migration from a single source population into South America serves as the simplest explanation of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号