首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PTM should be defined as a diffuse primary meristem which decreases in cross-sectional extent (i.e., becomes a thinner-walled cylinder) in a basipetal direction. It is associated with extensive anticlinal cell files and consists of cell initials that divide predominantly in periclinal planes. This meristem occurs typically in monocotyledons, especially those with thick, compact stems in species with rosette shoot axes. The PTM is also associated with a wide crown, so that the apical meristem is either slightly above the level of youngest leaf primordia, at approximately the same level as the leaf primordia, or distinctly sunken below surrounding stem tissue and the youngest leaf primordia. The location is dependent on the extent of primary thickening growth occurring in a particular species. A meristem associated with primary thickening of other plant groups should not be called a primary thickening meristem unless all of the above characteristics are shown to be associated with the meristem being examined. The primary thickening meristem is responsible for primary thickening of a stem axis. Its ontogenetic relationship with the STM needs further investigation. Extensive primary stem thickening has been observed in non-monocotyledons (ferns, lycopods, cycads, and dictyledons). Some of these organisms appear to undergo primary thickening from a PTM in a similar process as that which occurs in monocotyledons. Further research is necessary to establish the mechanisms of primary thickening in these cases.  相似文献   

2.
Anatomical observations were made on 1-, 2-, and 3-yr-old plants of Yucca whipplei Torr, ssp. percursa Haines grown from seed collected from a single parent in Refugio Canyon, Santa Barbara, California. The primary body of the vegetative stem consists of cortex and central cylinder with a central pith. Parenchyma cells in the ground tissue are arranged in anticlinal cell files continuous from beneath the leaf bases, through the cortex and central cylinder to the pith. Individual vascular bundles in the primary body have a collateral arrangement of xylem and phloem. The parenchyma cells of the ground tissue of the secondary body are also arranged in files continuous with those of the primary parenchyma. Secondary vascular bundles have an amphivasal arrangement and an undulating path with frequent anastomoses. Primary and secondary vascular bundles are longitudinally continuous. The primary thickening meristem (PTM) is longitudinally continuous with the secondary thickening meristem (STM). Axillary buds initiated during primary growth were observed in the leaf axils. The STM becomes more active prior to and during root initiation. Layers of secondary vascular bundles are associated with root formation.  相似文献   

3.
Observations were made of stem sections stained for RNA and protein of Yucca whipplei ranging from germinated seedlings to 6-month-old plants. One-, two-, and three-month-old plants were labeled with tritiated thymidine, fixed in FAA, sectioned, stained with the Feulgen reaction, and prepared for autoradiography. The serial transverse sections were outlined with a drawing tube recording all labeled nuclei on a computer graphics tablet. Computer-assisted three-dimensional reconstructions were made to observe the locations of labeled nuclei. The two techniques are in agreement: the thickening meristem is broad near the top of the stem, occupies a narrower band at more basipetal levels, and disappears below the level of recent root initiation. There are no gaps in staining or labeling, and there are no changes in staining or labeling that would distinguish between the activities of the primary thickening meristem and the secondary thickening meristem in those plants which possess both. The meristems are continuous at all stages of development in the young vegetative stem. The STM is interpreted to be a developmental continuation of the PTM.  相似文献   

4.
The developmental anatomy of Mirabilis jalapa was investigated during the first 90 days of growth. The primary thickening meristem (PTM) initially differentiates in the pericycle at the top of the cotyledonary node 18 days after germination, then basipetally in the pericycle through the hypocotyl. The PTM differentiates acropetally into the stem and in the pericycle of the primaiy root, commencing 22 days after germination. Endodermis is easily identifiable in hypocotyls as well as in primary roots because of Casparian thickenings in its cells. It has not been definitely identified in stems. There are three rings of primary vascular bundles in the stem. The PTM differentiates as segments of cambium in a layer of cells (probably in the pericycle) on an arc between vascular bundles of the outer bundle ring. Later, arcs of PTM differentiate externally to the phloem of each bundle. Each arc forms a connection between original segments of PTM lying on either side of each vascular bundle. Thus, the PTM becomes a continuous cylinder. The PTM differentiates in the pericycle outside vascular tissue in the hypocotyl and root. Differentiation of the PTM and the mode of secondary thickening is similar in plants exposed to short (8-hr) and to long (18-hr) photoperiods, but some differences were observed. The PTM differentiates closer to the stem apex in all plants over 18 clays of age growing vegetatively under long photoperiods. That is, the diffuse lateral meristem, in whose cells the PTM differentiates in young intemodes, is shorter in nearly all investigated plants growing in long photoperiods. The hypocotyl and base of the primary root of 40-day-old plants in short photoperiods were more enlarged than those of the same age plants in long photoperiods; but, at the end of 64 days, the hypocotyl and primaiy root base were larger in plants growing under short photoperiods. Thirty-four days after seed germination, flower initiation occurs in plants exposed to short photoperiods. One hundred fifty days after seed germination, flowers differentiate on plants exposed to long photoperiods.  相似文献   

5.
6.
The development of radial growth which leads to the pachycaulous form was investigated in eight of the 10 genera of the Cycadales; i.e., Ceratozamia, Cycas, Dioon, Encephalartos, Macrozamia, Microcycas, Stangeria, and Zamia. In all taxa, development of radial growth is essentially the same: a primary thickening meristem is differentiated in the stelar region of the cotyledonary node of the seedling at germination and produces derivatives mainly centrifugally. This primary thickening meristem (PTM) then differentiates acropetally and becomes continuous with the peripheral zone of the shoot apex. At first the PTM is a vertical cylinder, but as the seedling continues to grow into an adult plant, the PTM shows a more horizontal orientation (like an open umbrella) and produces the broad cortex. Secondary growth is by a vascular cambium which produces secondary xylem to the inside and secondary phloem to the outside. The broad pith originates from derivatives of the rib meristem of the massive shoot apex. The seedling and young plant is composed of a shortened shoot (i.e., no internodes) produced by the PTM and rib meristem, and a large fleshy primary root which results from a diffuse growth pattern. Individual cells in both the pith and cortex of the root divide. Their derivatives divide at right angles to the original division plane. Thus, quartets and even octets of cells are recognizable and can be traced to individual parent cells.  相似文献   

7.
The LATD gene of the model legume, Medicago truncatula, is required for the normal function of three meristems, i.e. the primary root, lateral roots and nitrogen-fixing nodules. In latd mutants, primary root growth eventually arrests, resulting in a disorganized root tip lacking a presumptive meristem and root cap columella cells. Lateral root organs are more severely affected; latd lateral roots and nodules arrest immediately after emerging from the primary root, and reveal a lack of organization. Here we show that the plant hormone, abscisic acid (ABA), can rescue the latd root, but not nodule, meristem defects. Growth on ABA is sufficient to restore formation of small, cytoplasm-rich cells in the presumptive meristem region, rescue meristem organization and root growth and formation of root cap columella cells. In contrast, inhibition of ethylene synthesis or signaling fails to restore latd primary root growth. We find that latd mutants have normal levels of ABA, but exhibit reduced sensitivity to the hormone in two other ABA-dependent processes: seed germination and stomatal closure. Together, these observations demonstrate that the latd mutant is defective in the ABA response and indicate a role for LATD-dependent ABA signaling in M. truncatula root meristem function.  相似文献   

8.
Stems of Allium cepa L., 1, 2, 5, and 6 months old respond similarly when stained for protein and RNA. The primary thickening meristem (PTM) stains more intensely than surrounding stem tissues. The acropetal region of the PTM is a broadly staining band which narrows basipetally to the level of the initiation of shoot-borne roots in the stem and disappears more basipetally. These staining patterns are consistent with the hypothesis that the PTM functions in stem thickening and root production, and also indicate that the meristem functions before histological evidence of the cambial-like zone exists in the onion stem. Histochemical staining may be an accurate method of locating the PTM.  相似文献   

9.
Pattern formation during de novo assembly of the Arabidopsis shoot meristem   总被引:5,自引:0,他引:5  
Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. We characterize early patterning during de novo development of the Arabidopsis shoot meristem using fluorescent reporters of known gene and protein activities required for shoot meristem development and maintenance. We find that a small number of progenitor cells initiate development of new shoot meristems through stereotypical stages of reporter expression and activity of CUP-SHAPED COTYLEDON 2 (CUC2), WUSCHEL (WUS), PIN-FORMED 1 (PIN1), SHOOT-MERISTEMLESS (STM), FILAMENTOUS FLOWER (FIL, also known as AFO), REVOLUTA (REV), ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) and CLAVATA 3 (CLV3). Furthermore, we demonstrate a functional requirement for WUS activity during de novo shoot meristem initiation. We propose that de novo shoot meristem induction is an easily accessible system for the study of patterning and self-organization in the well-studied model organism Arabidopsis.  相似文献   

10.
Axillary meristem development in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Axillary shoot apical meristems initiate post-embryonically in the axils of leaves. Their developmental fate is a main determinant of the final plant body plan. In Arabidopsis, usually a single axillary meristem initiates in the leaf axil even though there is developmental potential for formation of multiple branches. While the wild-type plants rarely form multiple branches in the leaf axil, tfl1-2 plants regularly develop two or more branches in the axils of the rosette leaves. Axillary meristem formation in Arabidopsis occurs in two waves: an acropetal wave forms during plant vegetative development, and a basipetal wave forms during plant reproductive development. We report here the morphological and anatomical changes, and the STM expression pattern associated with the formation of axillary and accessory meristems during Arabidopsis vegetative development.  相似文献   

11.
Hormone interactions at the root apical meristem   总被引:1,自引:0,他引:1  
Plants exhibit an amazing developmental flexibility. Plant embryogenesis results in the establishment of a simple apical-basal axis represented by apical shoot and basal root meristems. Later, during postembryonic growth, shaping of the plant body continues by the formation and activation of numerous adjacent meristems that give rise to lateral shoot branches, leaves, flowers, or lateral roots. This developmental plasticity reflects an important feature of the plant's life strategy based on the rapid reaction to different environmental stimuli, such as temperature fluctuations, availability of nutrients, light or water and response resulting in modulation of developmental programs. Plant hormones are important endogenous factors for the integration of these environmental inputs and regulation of plant development. After a period of studies focused primarily on single hormonal pathways that enabled us to understand the hormone perception and signal transduction mechanisms, it became obvious that the developmental output mediated by a single hormonal pathway is largely modified through a whole network of interactions with other hormonal pathways. In this review, we will summarize recent knowledge on hormonal networks that regulate the development and growth of root with focus on the hormonal interactions that shape the root apical meristem.  相似文献   

12.
Lateral meristems (pericycle, procambium and cambium, phellogen) are positioned in parallel to the lateral surface of the organ, where they are present, and produce concentric layers of undifferentiated cells. Primary lateral meristems, procambium and pericycle, arise during embryogenesis; secondary lateral meristems, cambium and phellogen, — during post embryonic development. Pericycle is most pluripotent plant meristem, as it may give rise to a variety of other types of meristems: lateral meristems (cambium, phellogen), apical meristems of lateral roots, and also shoot meristems during plant in vitro regeneration. Procambium and cambium developing from it give rise to the vascular tissues of the stems and roots, ensuring their thickening. The review considers the genetic control of lateral meristem development and the role of phytohormones in the control of their activities.  相似文献   

13.
Differentiation of the primary thickening meristem (PTM) was investigated in seedlings and older plants of Phytolacca americana L. Initiation of the PTM occurs in pericycle or inner cortex at the hypocotyl-primary root junction of young plants. Differentiation of the PTM in stems occurs acropetally in a cylinder of randomly dividing cells termed the diffuse lateral meristem (DLM). The PTM produces secondary tissue to the inside (internal conjunctive tissue) and to the outside (external conjunctive tissue). Patches of xylem and phloem differentiate, opposite each other, in recently produced internal and external conjunctive tissue, respectively. The resulting strands (desmogen strands) of xylem and phloem are secondary in origin, and are peripheral to primary vascular tissues. Phloem of desmogen strands usually differentiates first. Xylem of desmogen strands is composed of both tracheids and vessel elements; the latter sometimes becoming occluded with tyloses and unidentified substances. As root and hypocotyl increase in diameter, cylinders of PTMs differentiate successively and centrifugally in external conjunctive tissue. Even though the first PTM differentiates in pericycle or inner cortex and later PTMs differentiate in external conjunctive tissue, all are referred to as PTMs because of their similar activity. Multiple rings of desmogen strands can be observed in transections of lateral roots, primary roots and hypocotyls. Throughout the length of the stem, only one ring of desmogen strands is present. Fewer rings of desmogen strands are present in the top of the hypocotyl and cotylendonary node, as compared to the subjacent hypocotyl, due to anastomoses of centrifugally differentiating desmogen strands.  相似文献   

14.
15.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

16.
17.
18.
It is well known that abscisic acid (ABA) can halt meristems for long periods without loss of meristem function, and can also promote root growth at low concentrations, but the mechanisms underlying such regulation are largely unknown. Here we show that ABA promotes stem cell maintenance in Arabidopsis root meristems by both promoting the quiescence of the quiescent centre (QC) and suppressing the differentiation of stem cells and their daughters. We demonstrate that these two mechanisms of regulation by ABA involve distinct pathways, and identify components in each pathway. Our findings demonstrate a cellular mechanism for a positive role for ABA in promoting root meristem maintenance and root growth in Arabidopsis.  相似文献   

19.
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUSCLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species. S. Sawa is the recipient of the BSJ Award for Young Scientist, 2007.  相似文献   

20.
Perhaps the most amazing feature of plants is their ability to grow and regenerate for years, sometimes even centuries. This fascinating characteristic is achieved thanks to the activity of stem cells, which reside in the shoot and root apical meristems. Stem cells function as a reserve of undifferentiated cells to replace organs and sustain postembryonic plant growth. To maintain meristem function, stem cells have to generate new cells at a rate similar to that of cells leaving the meristem and differentiating, thus achieving a balance between cell division and cell differentiation. Recent findings have improved our knowledge on the molecular mechanisms necessary to establish this balance and reveal a fundamental signaling role for the plant hormone cytokinin. Evidence has been provided to show that in the root meristem cytokinin acts in defined developmental domains to control cell differentiation rate, thus controlling root meristem size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号