首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacillus casei and Streptococcus faecalis accumulated labeled folic acid and metabolized this compound to poly-gamma-glutamates of chain lengths of up to 11 and 5, respectively. Octa- and nonaglutamates predominated in L. casei, and tetraglutamates predominated in S. faecalis. The most effective monoglutamate substrates for the L. casei and S. faecalis folylpoly-gamma-glutamate (folylpolyglutamate) synthetases were methylene- and formyltetrahydrofolate, respectively. Methylenetetrahydropteroylpoly-gamma-glutamates were the preferred poly-gamma-glutamate substrates for both enzymes and, in each case, the highest activity was observed with the diglutamate substrate. The final distribution of folylpolyglutamates in these bacteria appeared to reflect the ability of folates with various glutamate chain lengths to act as substrates for the bacterial folylpolyglutamate synthetases. The proportions of individual folylpolyglutamates were markedly affected by culturing the bacteria in medium containing adenine, whereas thymine was without effect. Adenine did not affect the level of folylpolyglutamate synthetase in either organism but caused a large increase in the proportion of intracellular folates containing one-carbon units at the oxidation level of formate, folates which are substrates for enzymes involved in purine biosynthesis. The folates with shorter glutamate chain lengths in bacteria cultured in the presence of adenine resulted from primary regulation of the de novo purine biosynthetic pathway, regulation which caused an accumulation of formyltetrahydropteroyl-poly-gamma-glutamates (folate derivatives that are ineffective substrates for folylpolyglutamate synthetases), and did not result from regulation of folylpolyglutamate synthetase per se.  相似文献   

2.
The activity of folylpolyglutamate hydrolase was measured throughout intraperitoneal growth of Krebs ascites cells in mice and after exposure to methotrexate. Hydrolase activity was lowest during the log phase of growth. Methotrexate administered intraperitoneally during log growth caused a dose- and time-dependent increase in hydrolase activity. Modest changes were observed in endogenous folate polyglutamate chain length distributions throughout growth and upon exposure to methotrexate, but these changes could not be correlated with hydrolase activity.  相似文献   

3.
The behavior of methylenetetrahydrofolate polyglutamate conjugates in cultured mouse hepatoma cells which were starved of folate has been investigated. Folate deprivation caused methylenetetrahydrofolate levels to decrease an order of magnitude. This diminished pool consisted essentially completely of the octaglutamate form. Replenishment of the media with folate caused a slow recovery to normal levels of methylenetetrahydrofolate with undetectable quantities of shorter chain length polyglutamates observable during recovery. Leucovorin, on the other hand, caused a much more rapid recovery to normal levels and gave rise to the early appearance of short chain length polyglutamate intermediates.  相似文献   

4.
The substrate specificity of alpha-hydroxyacid oxidase in the rat kidney has been investigated cytochemically by the cerium technique and biochemically with a luminometric assay applied to isolated renal peroxisomes. Rat kidneys were fixed by perfusion via the abdominal aorta with a low concentration (0.25%) of glutaraldehyde. Vibratome sections were incubated for 60 min at 37 degrees C in a medium containing 3 mM CeCl3, 100 mM NaN3 and 5 mM of an alpha-hydroxyacid in 0.1 M Pipes or 0.1 M Tris-maleate buffer both adjusted to pH 7.8. Ten aliphatic alpha-hydroxyacids with chain lengths between 2 and 8 carbon atoms and two aromatic substrates were tested. The alpha-hydroxyacid oxidase in the kidney exhibited a markedly different substrate specificity than the corresponding enzyme in the liver. Thus glycolate gave a negative reaction while two aromatic substrates, mandelic acid and phenyllactic acid, stained prominently. With aliphatic substrates a stronger reaction was obtained in Pipes than in the Tris-maleate buffered incubation media. The best reaction in the kidney was obtained with hydroxybutyric acid. These cytochemical findings were confirmed by the luminometric determination of the oxidase activity in isolated purified peroxisome fractions. By electron microscopy the electron dense reaction product of cerium perhydroxide was found in the matrix of peroxisomes in the proximal tubules. The intensity of reaction varied markedly in neighbouring epithelial cells but also in different peroxisomes within the same cell. Thus heavily stained particles were seen next to lightly reacted ones. These observations establish the substrate specificity of alpha-hydroxyacid oxidase in the rat kidney and demonstrate the marked heterogeneity in the staining of renal peroxisomes for this enzyme.  相似文献   

5.
The effects of two peroxisome proliferators, p-chlorophenoxyisobutyric acid (clofibric acid) and 2,2'-(decamethylenedithio)diethanol (tiadenol), on cytosolic long-chain acyl-CoA hydrolase and peroxisomal beta-oxidation were studied in several organs of rat. Among organs of control rats, the brain had the highest activity of long-chain acyl-CoA hydrolase, followed by testis, and a low activity was found in other tissues. Administration of the peroxisome proliferators caused a marked increase in activity of long-chain acyl-CoA hydrolase in both liver and intestinal mucosa and a slight increase in the activity in kidney, but little affected acyl-CoA hydrolase activity in either brain, testis, heart, spleen and skeletal muscle. In accordance with the change in the activity of acyl-CoA hydrolase, the activity of peroxisomal beta-oxidation was markedly increased in liver, intestinal mucosa and kidney, and a slight increase was found in brain and testis, whereas peroxisome proliferators little affected the activity in other organs tested. Gel filtration of cytosol from intestinal mucosa showed that clofibric acid caused an appearance of a new peak in intestinal mucosa. Although cytosol of liver, intestinal mucosa, brain and testis contained two 4-nitrophenyl acetate esterases with different molecular weights (about 105,000 and about 55,000), these esterases are different from cytosolic long-chain acyl-CoA hydrolases of these four organs in respect of molecular weight. The administration of clofibric acid little affected cytosolic 4-nitrophenyl acetate esterases. Comparative studies on cytosolic long-chain acyl-CoA hydrolases from these four organs showed that liver hydrolase I (molecular weight of about 80,000) had properties similar to those of brain and testis enzymes. On the other hand, intestinal mucosa enzyme was different from either hepatic hydrolase I or II (molecular weight of about 40,000). The results from the present study suggest that inductions of peroxisomal beta-oxidation and cytosolic long-chain acyl-CoA hydrolases are essential responses of rats to peroxisome proliferators not only in liver but also in intestinal mucosa and that induced hydrolases are not attributable to non-specific esterases.  相似文献   

6.
An acyl-CoA hydrolase, referred to as hBACH, was purified from human brain cytosol. The enzyme had a molecular mass of 100 kDa and 43-kDa subunits, and was highly active with long-chain acyl-CoAs, e.g. a maximal velocity of 295 micromol/min/mg and K(m) of 6.4 microM for palmitoyl-CoA. Acyl-CoAs with carbon chain lengths of C(8-18) were also good substrates. In human brain cytosol, 85% of palmitoyl-CoA hydrolase activity was titrated by an anti-BACH antibody, which accounted for over 75% of the enzyme activity found in the brain tissue. The cDNA isolated for hBACH, when expressed in Escherichia coli, directed the expression of palmitoyl-CoA hydrolase activity and a 44-kDa protein immunoreactive to the anti-BACH antibody, which in turn neutralized the hydrolase activity. The hBACH cDNA encoded a 338-amino acid sequence which was 95% identical to that of a rat homolog. The hBACH gene spanned about 130 kb and comprised 9 exons, and was mapped to 1p36.2 on the cytogenetic ideogram. These findings indicate that the long-chain acyl-CoA hydrolase present in the brain is well conserved between man and the rat, suggesting a conserved role for this enzyme in the mammalian brain, and enabling genetic studies on the functional analysis of acyl-CoA hydrolase.  相似文献   

7.
The effects of 4-fluoroglutamate on the reaction catalyzed by partially purified rat liver folylpolyglutamate synthetase have been investigated. DL-threo-4-Fluoroglutamate was an effective, concentration-dependent inhibitor of polyglutamylation of both tetrahydrofolate and methotrexate, while the erythro isomer was weakly inhibitory. 4-Fluoroglutamate acted as an alternate substrate; the DL-threo isomer was incorporated only slightly less effectively than L-glutamate, while the erythro isomer was poorly incorporated. The resulting product, a pteroylglutamyl-gamma-(4-fluoro)glutamate, was a very poor substrate for further glutamylation. Thus, when tetrahydrofolate and 4-fluoroglutamate were substrates, the sole Zn/HCl cleavage product co-chromatographed on high performance liquid chromatography with chemically synthesized p-aminobenzoylglutamyl-gamma-(4-fluoro)glutamate. When [3H]methotrexate (4-NH2-10-CH3PteGlu) and 4-fluoroglutamate were the substrates, one product was obtained which co-chromatographed on high performance liquid chromatography with chemically synthesized 4-NH2-CH3PteGlu-gamma-(4-fluoro)glutamate. Further evidence that the product from [3H]methotrexate was a dipeptide came from gamma-glutamyl hydrolase digestion experiments and quantitative amino acid analysis. The appearance of trace amounts of a product having properties consistent with the addition of a second 4-fluoroglutamate occurred only under forcing conditions. The chemically and enzymatically synthesized fluoroglutamate-containing products were at least 15 times poorer than the analogous diglutamyl compound as substrates for rat liver folylpolyglutamate synthetase. These results are consistent with inhibition of polyglutamate synthesis by 4-fluoroglutamate through a "leaky" chain termination mechanism.  相似文献   

8.
Summary In order to verify the formation of endogenous 3-deoxyglucosone (3-DG), an intermediate compound in the Maillard reaction, we tried to detect 3-deoxyfructose (3-DF) which is main metabolite of 3-DG. Endogenous 3-DF was detected in the urine of normal and diabetic rats by the oral administration of 3-DG-free feed. Metabolizing activities of crude extracts prepared from porcine organs were examined using methylglyoxal (MG) and 3-DG as substrates. NAD- or NADP-dependent 2-oxoaldehyde dehydrogenase activity was detected in liver, kidney, small intestine and lung. On the other hand, NADH- or NADPH-dependent 2-oxoaldehyde reductase activity was detected in all porcine organs in which liver and kidney contained higher activity of NADPH-dependent enzyme than the other organs. The reductase which catalyzes the reduction of 3-DG to 3-DF and MG to acetol, was purified and characterized from porcine kidney. The enzyme was the same to NADPH-dependent-2-oxoaldehyde reductase from porcine liver, which is speculated to prevent the advanced stage of the Maillard reaction as a self-defense enzyme.  相似文献   

9.
Previous methods for the measurement of folylpolyglutamate synthetase have been modified and combined to facilitate assay of this enzyme at the levels found in mammalian tissues. Batch adsorption of product onto charcoal allowed the rapid analysis of multiple samples of partially purified enzyme, e.g., column fractions. This technique, however, was unsuitable for the assay of folylpolyglutamate synthetase in crude cytosols due to the presence of interfering enzyme activities. On the other hand, the sequential use of charcoal adsorption and batch elution from DEAE-cellulose permitted isolation of the folate product from assay mixtures containing crude enzyme fractions. Under these conditions, interference from other enzyme activities and background values were low enough for the quantitation of 10 pmol of oligoglutamyl folate product. Folylpolyglutamate synthetase was measured in a series of mouse tissues and tumors. Enzyme activity was quite low in all cases. Mouse liver and kidney and some of the tumors studied had the highest levels (50-100 pmol product/h/mg protein); other tumors and spleen had lower levels. Enzyme activity was at the limit of detection in intestine and lung and was below detection in brain, heart, and skeletal muscle.  相似文献   

10.
Prolyl dipeptidase (iminodipeptidase, L-prolyl-amino acid hydrolase, EC 3.4.13.8) was purified 180-fold from bovine kidney. The enzyme which was obtained in a 10% yield was completely separated from a number of known kidney peptidases including an enzyme of very similar substrate specificity, proline aminopeptidase (L-prolyl-peptide hydrolase, EC 3.4.11.5). The specific activity of the enzyme with L-prolylglycine as substrate is 1600 units of activity per mg protein. Optimum activity of the enzyme is at pH 8.75 and the molecular weight on gel filtration was estimated to be 100 000. The isoelectric point of the enzyme is pH 4.25. Studies of substrate specificity showed that the enzyme preferentially hydrolyzes dipeptides and dipeptidyl amides with L-proline or hydroxy-L-proline at the N-terminus. Longer chain substrates with N-terminal proline were not hydrolyzed.  相似文献   

11.
Transport and metabolic turnover of methotrexate (MTX) polyglutamates were examined in lysosomes derived from S180 cells. These studies extend prior work from this laboratory (Barrueco, J. R., and Sirotnak, F. M. (1991) J. Biol. Chem 266, 11732-11737) which described basic properties of a facilitative transport system in lysosomes capable of mediating intralysosomal accumulation of MTX polyglutamates. In the present report, we show that the rate of turnover of MTX polyglutamates in lysosomes, which releases MTX in the extralysosomal space, is limited by the extent of mediated intralysosomal accumulation of the polyglutamate and reduced sulfhydryls that activate the enzyme folylpolyglutamate hydrolase. Evidence is presented that cysteine functions as the naturally occurring reduced sulfhydryl compound in lysosomes being equipotent to 2-mercaptoethanol as an activator of folylpolyglutamate hydrolase. Folylpolyglutamate hydrolase in permeabilized lysosomes from S180 cells exhibited a low pH optimum characteristic of a lysosomal enzyme, was activated at concentrations of reduced sulfhydryl at 0.1 mM and above, and exhibited Km values in the range of 0.2-3 microM that decreased with increase in polyglutamate chain length. Values for Km for MTX polyglutamates of folylpolyglutamate hydrolase activity were 100-200-fold lower than values for Km or Ki for facilitated intralysosomal transport, whereas capacities for both processes were similar. This relationship between the kinetic properties of each process ensures efficient hydrolysis of MTX polyglutamates within the lysosome.  相似文献   

12.
Calcium activated neutral proteinase (mcalpain) activity was determined in brain and other tissue of rat. More than 60% of the brain mcalpain activity was present in the particulate fraction while only 30% was in cytosol. In contrast, particulate fractions of liver, kidney, muscle, and heart contained about 8–12% of tissue mcalpain activity while 88% was present in cytosol. Removal of the endogenous inhibitor calpastatin increased the tissue mcalpain activity severalfold. Triton X-100 and deoxycholate (DOC) stimulated the neural calpain activity by ten-fold while activity in non-neural tissue was unaffected. Incubation with other detergents, e.g. Triton N-57 and thioglucopyranoside, stimulated brain calpain activity five-fold while Brij-35 did not have any effect. Sodiumdodecylsulphate (SDS), on the other hand, inhibited the enzyme activity. Brain contained the lowest calpain activity compared to non-neural tissue. The calpain activity in muscle, kidney and heart was three-fold greater than liver. Immunoblot identification of the enzyme revealed that calpain was predominantly in the particulate fraction and less in cytosol of brain while it was present mainly in cytosol and less in the pellet fractions of non-neural tissue.  相似文献   

13.
Extracts of Escherichia coli contained an enzymatic activity which catalyzed the addition of L-glutamate to the alpha-carboxyl of various polyglutamate substrates, including folylpolyglutamates. Much of the enzyme activity was separated by DE52 chromatography and gel filtration from the enzyme which adds the first three glutamates in the biosynthesis of folylpolyglutamates, dihydrofolate synthetase-folylpolyglutamate synthetase. The two enzyme activities differed in many properties. Whereas dihydrofolate synthetase-folylpolyglutamate synthetase preferred pteroate or pteroylmonoglutamate substrates, the folylpoly-alpha-glutamate synthetase preparations effectively utilized tetrahydropteroylpolyglutamates, pteroylpolyglutamates, p-aminobenzoylpolyglutamates (pAB(Glu)n), and even a polyglutamate tripeptide. Several di- and triglutamyl peptides were inhibitory to folylpoly-alpha-glutamate synthetase activity, but not to dihydrofolate synthetase-folylpolyglutamate synthetase. Conversely, dihydropteroate noncompetitively inhibits the folylpolyglutamate synthetase reaction of the dihydrofolate synthetase-folylpolyglutamate synthetase protein, but did not inhibit the folylpoly-alpha-glutamate synthetase reaction. Potassium chloride was inhibitory to folylpoly-alpha-glutamate synthetase activity (as were other salts and several polyanions), in contrast to the absolute requirement of dihydrofolate synthetase-folylpolyglutamate synthetase activity for a monovalent cation such as K+. Incubation of a folylpoly-alpha-glutamate synthetase preparation with (6S)-tetrahydropteroyltri(gamma)glutamate generated products which after chemical cleavage to pAB(Glu)n were identical to those from growing E. coli, in high performance liquid chromatography retention times and in pattern of digestion by alpha-COOH bond-specific carboxypeptidase Y. High performance liquid chromatography and mass spectral analysis of the products of the in vitro reactions of folylpoly-alpha-glutamate synthetase with several substrates also demonstrated the addition of glutamate residues via alpha-COOH linkages. Thus, there appear to be two folylpolyglutamate synthetase activities in E. coli, dihydrofolate synthetase-folylpolyglutamate synthetase which adds the first three glutamate residues by gamma-COOH linkages and the folylpoly-alpha-glutamate synthetase activity which extends the folylpolyglutamate chain via gamma-COOH peptide bonds.  相似文献   

14.
1. The brain and ocular fluid of skipjack tuna (Katsuwonus pelamis) contained high levels of N-acetylhistidine deacetylase. 2. This enzyme had a molecular weight of about 120,000 and was activated by zinc or cobaltous ions. 3. Cod (Gadus callarias) brain, ocular fluid and muscle contained a similar metal-activated thiol hydrolase, the muscle enzyme being known as anserinase. 4. The purified enzymes hydrolyzed N-acetylhistidine, carnosine, homocarnosine, anserine and certain other dipeptides. 5. Their specificity resembled that of hog kidney homocarnosinase. 6. In both fish, brain and ocular fluid were rich sources of this hydrolase, whereas muscle contained only trace amounts.  相似文献   

15.
The tissue distribution and subcellular location of branched chain aminotransferase was analyzed using polyclonal antibodies against the enzyme purified from rat heart mitochondria (BCATm). Immunoreactive proteins were visualized by immunoblotting. The antiserum recognized a 41-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate. The 41-kDa protein was always present in mitochondria which contained branched chain aminotransferase activity, skeletal muscle, kidney, stomach, and brain, but not in cytosolic fractions. In liver mitochondria, which have very low levels of branched chain aminotransferase activity, the 41-kDa protein was not present. However, two immunoreactive proteins of slightly higher molecular masses were identified. These proteins were located in hepatocytes. The 41-kDa protein was present in fetal liver mitochondria but not in liver mitochondria from 5-day neonates. Thus disappearance of the 41-kDa protein coincided with the developmental decline in liver branched chain aminotransferase activity. Two-dimensional immunoblots of isolated BCATm immunocomplexes showed that the liver immunoreactive proteins were clearly different from the heart and kidney proteins which exhibited identical immunoblots. Investigation of BCATm in subcellular fractions prepared from different skeletal muscle fiber types revealed that branched chain aminotransferase is exclusively a mitochondrial enzyme in skeletal muscles. Although total detergent-extractable branched chain aminotransferase activity was largely independent of fiber type, branched chain aminotransferase activity and BCATm protein concentration were highest in mitochondria prepared from white gastrocnemius followed by mixed skeletal muscles with lowest activity and protein concentration found in soleus mitochondria. These quantitative differences in mitochondrial branched chain aminotransferase activity and enzyme protein content suggest there may be differential expression of BCATm in different muscle fiber types.  相似文献   

16.
1. NADPH-specific mitochondrial enoyl-CoA reductase can be assayed by a sensitive radioactive test, employing tritium-labelled NADPH, synthesized in a prefixed reaction from D-[1-3H]-glucose via the hexokinase and glucose-6-phosphate dehydrogenase reactions. 2. Liver, kidney cortex, heart muscle, skeletal muscle, brown adipose tissue, brain cortex, and aortic intimal tissue are investigated concerning chain lengths specificity of the chain elongation and the enoyl-CoA reductase. Medium-chain acyl-CoA compounds prove to be the best primers for the chain elongation. Enoyl-CoA reductases still show large incorporation rates with hexadecenoyl-CoA. 3. The differences in the chain lengths specificity of the chain elongation and enoyl-CoA reductase can be explained by the inhibitory effect of long-chain acyl-CoA derivatives on the 3-hydroxyacyl-CoA dehydrogenase. 4. The nucleotide specificity in the different tissues reveals two types of chain elongation: In addition to liver and kidney cortex, mitochondria of brown adipose tissue need NADH + NADPH for optimal chain elongation, whereas heart muscle, skeletal muscle and aortic intimal mitochondria only need NADH. 5. Different physiological roles are proposed for the two types. The "heart type" may be of importance in the conservation of reducing equivalents or acetate units in the anaerobic state, the "liver type" may play a role in the transfer of hydrogen from NADPH to the respiratory chain. In addition, the mitochondrial chain elongation may serve as bypass of the first part of the respiratory chain.  相似文献   

17.
The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B12 status, can be mimicked in vitro by using purified enzyme. Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B12 deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly. 4-Aminofolates are metabolized to retainable forms at a slow rate compared to folates. Although folate accumulation by cells is not very responsive to changes in folylpolyglutamate synthetase levels and cellular glutamate concentrations, cellular accumulation of anti-folate agents would be highly responsive to any factor that changes the expression of folylpolyglutamate synthetase activity.  相似文献   

18.
The effect of insulin on lysosomal acid cholesterol ester hydrolase activity was studied in liver, heart and fat pad preparations from rats and mice. Hyperinsulinemia was induced for a period of 6 days in rats by the subcutaneous administration of exogenous insulin by an osmotic minipump. The effect of more chronic endogenous hyperinsulinemia was studied using genetic strains of diabetic (db/db) mice at 12 weeks of age. Mouse liver and heart preparations were characterized as having an acid pH optimum of 4.5-5 for cholesterol ester hydrolase activity; a smaller but distinct pH optimum could also be observed at pH 7. In contrast, hydrolase activity in mouse fat pad preparations had only one distinct pH optimum of 6.5. Hyperinsulinemia in rats and mice resulted in a significant decrease in acid cholesterol ester hydrolase activity in heart preparations, but had no consistent effect on acid hydrolase activity observed in liver and fat pad preparations. This decrease in lysosomal acid cholesterol ester hydrolase activity in cardiac tissue due to hyperinsulinemia cannot be related to any changes in lipoprotein turnover caused by insulin or diabetes.  相似文献   

19.
20.
Wu K  Cossins EA  King J 《Plant physiology》1994,104(2):373-380
In vivo folylpolyglutamate pools of the wild-type (Px4) and methotrexate-resistant (MTX161) Datura innoxia cell lines were detected by incorporation of [14C]p-aminobenzoate into folates. The folylpolyglutamate derivatives were cleaved to p-aminobenzoylpolyglutamates and separated according to glutamyl chain length by high-performance liquid chromatography. Hexaglutamates were the predominant form in both Datura cell lines. The proportions of individual folylpolyglutamates were unaffected by culturing the cells in medium containing products of one-carbon metabolism such as glycine, adenine, thymidine, or methionine. Radiolabeling of the hexaglutamates was greatly reduced in the presence of 10-8 M methotrexate (MTX) in the Px4 cells but not in the MTX161 cells. Tetrahydrofolate, 5, 10-methylenetetrahydrofolate, and folinic acid were effective substrates for the folylpolyglutamate synthetase from Datura cells in vitro, whereas MTX and folate were poor substrates. In vivo, MTX can be slowly converted into its polyglutamate derivatives up to MTXGlu4 or MTXGlu5 in Datura cells in the longer term. Significantly lower levels of MTX polyglutamates in MTX161 cells were found compared with those of Px4 cells during prolonged (10 d) exposure to MTX. Although in vivo and in vitro folylpolyglutamate synthesis was found to be similar in both cell lines, about a 4-fold increase in specific activity of [gamma]-glutamyl hydrolase (GGH) was detected in the MTX161 cell line. The increase in GGH in the resistant cells suggested that breakdown of polyglutamylated forms of MTX may play a role in acquired MTX resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号