首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of apical membrane Na channels in the rat cortical collecting tubule was studied during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet or the diuretic furosemide. Tubules were isolated and split open to expose the luminal membrane surface. Induction of Na channel activity was studied in cell- attached patches of the split tubules. No activity was observed with control animals on a normal diet. Channel activity could be induced by putting the animals on the low-Na diet for at least 48 h. The mean number of open channels per patch (NPo) was maximal after 1 wk on low Na. Channels were also induced within 3 h after injection of furosemide (20 mg/kg body wt per d). NPo was maximal 48 h after the first injection. In both cases, increases in NPo were primarily due to increases in the number of channels per patch (N) at a constant open probability (Po). With salt depletion or furosemide injection NPo is a saturable function of aldosterone concentration with half-maximal activity at approximately 8 nM. When animals were salt repleted after 1- 2 wk of salt depletion, both plasma aldosterone and NPo fell markedly within 6 h. NPo continued to decrease over the next 14 h, while plasma aldosterone rebounded partially. Channel activity may be dissociated from aldosterone concentrations under conditions of salt repletion.  相似文献   

2.
Summary Changes in intracellular pH (pH i ) were measured using the pH indicator, BCECF, in principal cells from split opened cortical collecting tubules (CCTs) derived from rabbits maintained on a normal diet. This monolayer preparation has the advantage of allowing us to visualize the morphological differences in the two major cell types in this nephron segment under transmitted light. The visual identification of the cell types was verified using emission measurements taken from single principal and intercalated cells in the opened tubule which had been exposed to fluorescein isothiocyanate (FITC)-labeled peanut lectin. We confirmed the existence of an amiloride-sensitive Na/H exchange process activated during intracellular acidosis in principal cells. In addition, the exchanger was active under basal conditions and over a wide range of pH i . Because the exchanger was active under basal conditions we tested the hypothesis that changes in intracellular Na (Na i ) would alter pH i in a predictable way. Maneuvers designed to alter Na i were without significant effects within a 10-min time frame. Specifically, addition of 100 m ouabain to increase Na i or exposure of the tubules to 10–5 m amiloride to decrease luminal Na entry and reduce Na i did not have an effect on pH i . In some experiments we did observe however, after a 30-min exposure to ouabain, a small decrease in pH i . These results suggest that Na/H exchange is a major regulator of pH i in principal cells. However, regulation of Na transport by changes in pH i in principal cells of rabbit CCT via the activity of a Na/H exchanger do not seem to contribute to the feedback control of Na transport.This work was supported by U.S. Public Health Service grants DK27847 to L.G. Palmer and DK11489 to E.E. Windhager.  相似文献   

3.
The behavior of individual Na channels in the apical membrane of the rat cortical collecting tubule (CCT) was studied at different concentrations of the permeant ions Na and Li. Tubules were opened to expose their luminal surfaces and bathed in K-gluconate medium to minimize tubule-to-tubule variation in cell membrane potential and intracellular Na concentration. The patch-clamp technique was used to resolve currents through individual channels. The patch-clamp pipette was filled with solutions containing variable concentrations of either NaCl or LiCl. In one series of experiments, the concentrations were changed without substitutions. In another series, the ionic strength and Cl concentration were maintained constant by partial substitution of Li with N-methyl-D-glucamine (NMDG). In cell-attached patches, both the single-channel conductance (g) and the single-channel current (i) saturated as functions of the Na or Li activity in the pipette. Without NMDG, the saturation of i was well described by Michaelis-Menten kinetics with an apparent Km of approximately 20 mM activity for Na and approximately 50 mM activity for Li. Km was independent of voltage for both ions. With substitution for Li by NMDG, the apparent Km value for Li transport through the channels increased. The values of the probability of a channel's being open (Po) varied from patch to patch, but no effect of pipette ion activity on Po could be demonstrated. A weak dependence of Po on membrane voltage was observed, with hyperpolarization increasing Po by an average of 2.3%/mV.  相似文献   

4.
The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.  相似文献   

5.
Activities of Na channels and Na pumps were studied in the rat cortical collecting tubule (CCT) during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet, diuretics, or administration of exogenous aldosterone. Tubules were isolated and split open to expose the luminal membrane surface. Using the whole-cell patch-clamp technique, activities of the apical Na channels and the basolateral Na pumps were measured in principal cells as the currents inhibited by amiloride (10 microM) and ouabain (1 mM), respectively. Na channel current (INa) was not measurable in CCTs from control animals on a normal diet. INa was approximately 200 pA/cell in CCTs from animals on a low-Na diet or infused with aldosterone using osmotic minipumps. Currents attributable to the Na pump (Ipump) were similar in control animals and animals on a low-Na diet. Maximal currents were approximately 35 pA/cell in both groups, and decreased with hyperpolarization of the cell membrane. In contrast, administration of exogenous aldosterone increased Ipump fourfold. Coinfusion of aldosterone and amiloride in vivo through the minipumps did not affect the induction of INa but reduced the induction of Ipump by 80%. We conclude that the induction of channel activity in this tissue is a direct action of aldosterone, whereas the induction of pump activity may be a consequence of the increased Na traffic through the epithelial cells.  相似文献   

6.
Patch clamp methods were used to characterize sodium channels on the apical membrane of Ambystoma distal nephron. The apical membranes were exposed by everting and perfusing initial collecting tubules in vitro. In cell-attached patches, we observed channels whose mean inward unitary current averaged 0.39±0.05 pA (9 patches). The conductance of these channels was 4.3±0.2 pS. The unitary current approached zero at a pipette voltage of –92 mV. When clamped at the membrane potential the channel expressed a relatively high open probability (0.46). These characteristics, together with observation that doses of 0.5 to 2 m amiloride reversibly inhibited the channel activity, are consistent with the presence of the high amiloride affinity, high sodium selectivity channel reported for rat cortical collecting tubule and cultured epithelial cell lines.We used antisodium channel antibodies to identify biochemically the epithelial sodium channels in the distal nephron of Ambystoma. Polyclonal antisodium channel antibodies generated against purified bovine renal, high amiloride affinity epithelial sodium channel specifically recognized 110, 57, and 55 kDa polypeptides in Ambystoma and localized the channels to the apical membrane of the distal nephron. A polyclonal antibody generated against a synthetic peptide corresponding to the C-terminus of Apx, a protein associated with the high amiloride affinity epithelial sodium channel expressed in A6 cells, specifically recognized a 170 kDa polypeptide. These data corroborate that the apically restricted sodium channels in Ambystoma are similar to the high amiloride affinity, sodium selective channels expressed in both A6 cells and the mammalian kidney.This work was supported by American Heart Association, New York Affiliate Grant 91007G (LCS) and National Institute of Diabetes and Digestive and Kidney Disease Grants DK-37206 (DJB) and DK46705 (PRS).  相似文献   

7.
Previous studies have demonstrated that an increase in the activity of protein-tyrosine kinase (PTK) is involved in the down-regulation of the activity of apical small conductance K(+) (SK) channels in the cortical collecting duct (CCD) from rats on a K(+)-deficient diet (). We used the patch clamp technique to investigate the role of protein-tyrosine phosphatase (PTP) in the regulation of the activity of SK channels in the CCD from rats on a high K(+) diet. Western blot analysis indicated that PTP-1D is expressed in the renal cortex. Application of 1 microm phenylarsine oxide (PAO) or 1 mm benzylphosphonic acid, agents that inhibit PTP, reversibly reduced channel activity by 95%. Pretreatment of CCDs with PAO for 30 min decreased the mean NP(o) reversibly from control value 3.20 to 0.40. Addition of 1 microm herbimycin A, an inhibitor of PTK, had no significant effect on channel activity in the CCDs from rats on a high K(+) diet. However, herbimycin A abolished the inhibitory effect of PAO, indicating that the effect of PAO is the result of interaction between PTK and PTP. Addition of brefeldin A, an agent that blocks protein trafficking from Golgi complex to the membrane, had no effect on channel activity. Moreover, application of colchicine, a microtubule inhibitor, or paclitaxel, a microtubule stabilizer, had no effect on channel activity. In contrast, PAO still reduced channel activity in the presence of brefeldin A, colchicine, or paclitaxel. Furthermore, the effect of PAO on channel activity was absent when the tubules were bathed in 16% sucrose-containing bath solution or treated with concanavalin A. We conclude that PTP is involved in the regulation of the activity of SK channels and that inhibition of PTP may facilitate the internalization of the SK channels.  相似文献   

8.
Regulation of transport by principal cells of the distal nephron contributes to maintenance of Na(+) and K(+) homeostasis. To assess which of these ions is given a higher priority by these cells, we investigated the upregulation of epithelial Na(+) channels (ENaC) in the rat cortical collecting duct (CCD) during Na depletion with and without simultaneous K depletion. ENaC activity, assessed as whole cell amiloride-sensitive current in split-open tubules, was 260 ± 40 pA/cell in K-repleted but virtually undetectable (3 ± 1 pA/cell) in K-depleted animals. This difference was confirmed biochemically by the reduced amounts of the cleaved forms of both the α-ENaC and γ-ENaC subunits measured in immunoblots. In contrast, in K-depleted rats, simultaneously reducing Na intake did not affect the activity of ROMK channels, assessed as tertiapin-Q-sensitive whole cell currents, in the CCDs. The lack of Na current in K-depleted animals was the result of reduced levels of aldosterone in plasma, rather than a reduced sensitivity to the hormone. However, rats on a low-Na, low-K diet for 1 wk did not excrete more Na than those on a low-Na, control-K diet for the same period of time. Immunoblot analysis indicated increased levels of the thiazide-sensitive NaCl cotransporter and the apical Na-H exchanger NHE3. This suggests that with reduced K intake, Na balance is maintained despite reduced aldosterone and Na(+) channel activity by upregulation of Na(+) transport in upstream segments. Under these conditions, Na(+) transport by the aldosterone-sensitive distal nephron is reduced, despite the low-Na intake to minimize K(+) secretion and urinary K losses.  相似文献   

9.
Prostaglandin E1 (PGE1) at 1 nM inhibits arginine-vasopressin (AVP)-induced water reabsorption in the rabbit cortical collecting tubule (RCCT), while 100 nM PGE1, by itself, stimulates water reabsorption (Grantham, J. J., and Orloff, J. (1968) J. Clin. Invest. 47, 1154-1161). To investigate the basis for these two responses, we measured the effects of prostaglandins on cAMP metabolism in purified RCCT cells. In freshly isolated cells, PGE2, PGE1, and 16,16-dimethyl-PGE2 acting at high concentrations (0.1-10 microM) stimulated cAMP accumulation; however, one PGE2 analog, sulprostone (16-phenoxy-17,18,19,20-tetranor-PGE2 methylsulfonilamide), failed to stimulate cAMP accumulation or to antagonize PGE2-induced cAMP formation; PGD2, PGF2 alpha, and a PGI2 analog, carbacyclin (6-carbaprostaglandin I2), also failed to stimulate cAMP synthesis. These results suggest that there is a PGE-specific stimulatory receptor in RCCT cells which mediates activation of adenylate cyclase. Occupancy of this receptor would be anticipated to cause water reabsorption by the collecting tubule. At lower concentrations (0.1-100 nM) PGE2, PGE1, 16,16-dimethyl-PGE2, and, in addition, sulprostone inhibited AVP-induced cAMP accumulation by fresh RCCT cells in the presence of cAMP phosphodiesterase inhibitors. Pertussis toxin pretreatment of RCCT cells blocked the ability of both PGE2 and sulprostone to inhibit AVP-induced cAMP accumulation. In membranes prepared from RCCT cells, sulprostone prevented stimulation of adenylate cyclase by AVP. These results suggest that E-series prostaglandins (including sulprostone) can act through an inhibitory PGE receptor(s) coupled to the inhibitory guanine nucleotide regulatory protein, Gi, to block AVP-induced cAMP synthesis by RCCT cells. Occupancy of this receptor would be expected to cause inhibition of AVP-induced water reabsorption in the intact tubule. Curiously, after RCCT cells were cultured for 5-7 days, PGE2 no longer inhibited AVP-induced cAMP accumulation, but PGE2 by itself could still stimulate cAMP accumulation. In contrast to PGE2, epinephrine acting via an alpha 2-adrenergic, Gi-linked mechanism did block AVP-induced cAMP formation by cultured RCCT cells. This implies that some component of the inhibitory PGE response other than Gi is lost when RCCT cells are cultured.  相似文献   

10.
Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P < 0.05). In this study, we also directly studied cortical collecting tubule function from adult rats using in vitro microperfusion. There was no difference in basal or vasopressin-stimulated osmotic water permeability. However, while cortical collecting ducts of adult offspring whose mothers ate a 20% protein diet had no sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.  相似文献   

11.
Potassium secretion by the cortical collecting tubule   总被引:3,自引:0,他引:3  
The isolated perfused rabbit cortical collecting tubule has been shown to actively transport K from bath to lumen. The first step in this process is active uptake of K across the basolateral membrane via and Na:K exchange pump as evidenced by: 1) basolateral localization and Na:K exchange properties of the ouabain-sensitive Na,K-ATPase, 2) ouabain sensitivity of the Na and K fluxes, 3) interdependence of the Na and K fluxes, and 4) ouabain-sensitivity of 42K uptake into the cell across the basolateral membrane. At the luminal border, a significant K permeability of the apical cell membrane has been identified using electrophysiological techniques. This K permeability is insensitive to the diuretic amiloride, and, thus, differs from the pathway for Na entry, which is highly amiloride sensitive. A significant K permeability of the paracellular pathway is not apparent. It is concluded that K secretion by the rabbit cortical collecting tubule occurs via a two-step process: active uptake of K across the basolateral membrane via the Na:K exchange pump, followed by passive efflux of K across the apical membrane via an amiloride-insensitive K conductive pathway.  相似文献   

12.
The effects of prostacyclin (PGI2) on transepithelial potential difference (PD) and sodium transport were examined in rabbit cortical collecting tubules (CCT) perfused in vitro. Addition of PGI2 (10?6M) to the bathing medium, which was bubbled with 95% O2 – 5% CO2, caused a reversible decrease in PD averaging 49±9.4 (SE)%. Maximal effect was evident between 5–10 min. After addition of PGI2 and PD returned spontaneously towards control values within 30 min., corresponding to the rapid degradation of PGI2. In a more alkaline bathing solution achieved by bubbling with 100% O2, in which the degradation of PGI2 is known to be delayed markedly, the decrease in PD by PGI2 was continuous and dose-dependent, with half-maximal and maximal effects achieved at 10?7 M and 10?5 M, respectively. Neither 10?8 M PGI2 nor vehicle alone exerted significant effects on PD. 6-keto-PGF (10?5M), believed to be the major metabolite of PGI2, had no effect on PD. Lumen-to-bath flux of Na decreased with PGI2 from 9.0 to 5.6 pEq/cm/sec (n=4, p<0.005), although bath-to-lumen flux did not change significantly. In summary, PGI2 caused a dose-dependent decrease in PD of rabbit CCT and inhibited Na absorption in this segment in vitro. These results suggest that PGI2 may play an important role in regulating Na transport in CCT.  相似文献   

13.
Ca2+-activated K+ channels play an important role in Ca2+ signal transduction and may be regulated by mechanisms other than a direct effect of Ca2+. Inside-out patches of the apical membrane of confluent transformed rabbit cortical collecting duct cells cultured on collagen were subjected to patch clamp analysis. Two types of K+ channel, of medium and high conductance, were observed. The latter channel was characterized by a K+/Na+ permeability ratio of 10, an inwardly rectified current, a conductance of 80 pS at 0 mV, and an open probability dependent on both voltage and Ca2+. Guanosine 5-triphosphate (GTP) but not a guanosine 5-diphosphate (GDP) analogue, adenosine 5-triphosphate (ATP), cytidine 5-triphosphate (CTP), or inosine 5-triphosphate (ITP), inhibited the activity of this Ca2+-activated K+ channel. The inhibitory effect of GTP was dose dependent, with a 50% inhibitory concentration of 10–5 m in the absence of Mg2+. In the presence of Mg2+ (1 mm), which is required for the binding of GTP to G proteins, the 50% inhibitory concentration decreased to 3×10–12 m. Pertussis toxin or cholera toxin (each at 10 ng/ml) did not prevent the inhibitory effect of GTP. After removal of GTP from the medium bathing an inhibited channel, subsequent application of Ca2+ failed to activate the channel. Ca2+-activated K+ channels of smooth muscle cells and proximal tubule cells did not respond to GTP. Thus, the Ca2+-activated K+ channel in the apical membrane of collecting duct cells is inhibited by GTP, which appears to exert its effect via a G protein that is insensitive to both cholera and pertussis toxins.  相似文献   

14.
15.
Membrane potentials and conductances, and intracellular ionic activities were studied in isolated perfused collecting tubules of K+-adapted Amphiuma. Intracellular Na+ (aNai) and K+ (aKi) activities were measured, using liquid ion-exchanger double-barreled microelectrodes. Apical and basolateral membrane conductances were estimated by cable analysis. The effects of inhibition of the apical conductance by amiloride (10(-5) M) and of inhibition of the basolateral Na-K pump by either a low K+ (0.1 mM) bath or by ouabain (10(-4) M) were studied. Under control conditions, aNai was 8.4 +/- 1.9 mM and aKi 56 +/- 3 mM. With luminal amiloride, aNai decreased to 2.2 +/- 0.4 mM and aKi increased to 66 +/- 3 mM. Ouabain produced an increase of aNai to 44 +/- 4 mM, and a decrease of aKi to 22 +/- 6, and similar changes were observed when the tubule was exposed to a low K+ bath solution. During pump inhibition, there was a progressive decrease of the K+-selective basolateral membrane conductance and of the Na+ permeability of the apical membrane. A similar inhibition of both membrane conductances was observed after pump inhibition by low K+ solution. Upon reintroduction of K+, a basolateral membrane hyperpolarization of -23 +/- 4 mV was observed, indicating an immediate reactivation of the electrogenic Na-K pump. However, the recovery of the membrane conductances occurred over a slower time course. These data imply that both membrane conductances are regulated according to the intracellular ionic composition, but that the basolateral K+ conductance is not directly linked to the pump activity.  相似文献   

16.
Aldosterone increased the tubular volume in cortical collecting tubules (CCD) of rabbit kidney. It modulated the rate of cell sodium accumulation, under condition of ATPase inhibition (4 degrees C, in the absence of K+). In contrast, the relationship between Na+/K(+)-ATPase-dependent Na+ extrusion rate and intracellular Na+ concentration (Nai+) was similar in control, adrenalectomized, and aldosterone-treated adrenalectomized animals: Na+ extrusion rate increased with Nai+, up to 70 mM Nai+, and then plateaued. This indicates that aldosterone does not modify the characteristics of Nai(+)-dependent Na+ extrusion rate by the Na+/K(+)-ATPase pump in CCD.  相似文献   

17.
Basolateral Na-H exchange in the rabbit cortical collecting tubule   总被引:9,自引:3,他引:6       下载免费PDF全文
We used the intracellular absorbance spectrum of the dye 4',5'-dimethyl-5- (and -6-) carboxyfluorescein (Me2CF) to measure intracellular pH (pHi) in the isolated, perfused cortical collecting tubule (CCT) of the rabbit nephron. The incident spot of light was generally 10 micron in diameter, large enough to illuminate from two to six cells. No attempt was made to distinguish principal from intercalated cells. All experiments were carried out in HCO3- -free Ringer to minimize HCO3- transport. When cells were acid-loaded by briefly exposing them to Ringer containing NH+4 and then withdrawing the NH+4, pHi spontaneously recovered from the acid load. The pHi recovery was best fit by the sum of two exponentials. When the acid loading was performed in the absence of Na+, the more rapid of the two phases of pHi recovery was absent. The remaining slow phase never returned pHi to normal and was sometimes absent. Returning Na+ to the lumen had only a slight effect on the pHi recovery. However, when Na+ was returned to the basolateral (i.e., blood-side) solution, pHi recovered rapidly and completely. The apparent Km for basolateral Na+ was 27.3 +/- 4.5 mM. The basolateral Na-dependent pHi recovery was reversibly inhibited by amiloride. We conclude that the mechanism responsible for the rapid phase of pHi recovery is an Na-H exchanger confined primarily, if not exclusively, to the basolateral membrane of the CCT.  相似文献   

18.
19.
20.
The ontogenetic differentiation of transepithelial chloride transport was evaluated in the cortical collecting tubule of the rabbit kidney. Tubules from four control groups (I-IV) were studied during in vitro perfusion. I: body weight 150-280 g; II: 330-480 g; III: 530-880 g; IV: 980-1610 g. In each group, aldosterone (100 micrograms/100 g body weight/day) was given subcutaneously in three doses daily, for 6 days (IA-IVA). Transepithelial net chloride flux (pmol cm2 s1) increased by a factor of almost 3 from group I to group IV (p less than 0.01). Aldosterone induces net chloride flux by 103% (P = 0.03) in IA and by 78% (P = 0.01) in IIA; changes in groups III (21%) and IV (27%) were small. Therefore, the mineralocorticoid induces transepithelial chloride transport in cortical collecting tubule during early transport differentiation. The inducing action decreases with natural differentiation. Moreover, aldosterone alone suffices to induce the complete expression of transepithelial chloride transport in the cortical collecting tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号