首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epipodophyllotoxin glucopyranosides have previously been shown to interact with membrane lipids and to alter the activity of several lipid-embedded membrane proteins. To determine if these agents are acting as general membrane perturbants, we have further examined their effects on membrane processes in Ehrlich ascites tumor cells. [3H]VM-26 and [3H]VP-16 were taken up rapidly and concentrated within the cells in proportion to their lipophilicity. Neither agent was found to have any significant effect on the influx of L-[3H]leucine or alpha-[3H]aminoisobutyric acid. Likewise, these drugs had no significant effects on the hexose transporter. The nucleoside transporter, which is structurally and functionally similar to the hexose transporter, was dramatically affected, however. VM-26 was a non-competitive inhibitor of equilibrium-exchange influx of cytosine arabinoside in Ehrlich cells with a Ki of 15 microM. Equilibrium-exchange influx increased with temperature in control cells (Q10 = 2) but not in VM-26-treated cells; thus, VM-26 was a more potent inhibitor at higher temperatures. VM-26 also significantly reduced zero-trans influx in Ehrlich, P388, L5178Y, and ML-1 cells, and these effects were immediate in onset. VM-26 inhibited high-affinity binding of the nucleoside transport inhibitor nitrobenzylmercaptopurine riboside (NBMPR), but VM-26 enhanced non-specific NBMPR binding to Ehrlich cells. The apparent specificity of the epipodophyllotoxins for the nucleoside transporter is discussed.  相似文献   

2.
Various nucleoside di- and triphosphates have been compared with respect to their ability to protect rat brain hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1) activity against inactivation by chymotrypsin, glutaraldehyde, heat, and 5,5′-dithiobis(2-nitrobenzoic) acid. ATP could be distinguished from other nucleoside triphosphates in these comparisons, which may be related to the specificity with which ATP is utilized as a substrate. All nucleoside derivatives examined provided substantial protection against two or more of the above inactivating agents, indicating relatively nonspecific binding of nucleotides by brain hexokinase, consistent with a similar lack of specificity in the inhibition of this enzyme by nucleoside derivatives. The fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tetraiodofluorescein (TIF) was enhanced by binding to brain hexokinase. TNS binding was not affected by the presence of various relevant metabolites (Glc, glucose 6-phosphate, ATP), nor did TNS inhibit the enzyme. In contrast, substantial (approximately 70%) decreases in the fluorescence of bound TIF resulted from the addition of various nucleoside derivatives, and TIF served as a competitive inhibitor of brain hexokinase. These observations are consistent with the view that TIF binds to a nucleotide binding site of the enzyme. The inability of nucleotides to totally displace TIF was taken to indicate the existence of an additional TIF binding site (or sites) discrete from the catalytic site, and probably identical to the site(s) at which TNS binds with no effect on catalytic activity. The effects of saturating levels of ATP and ADP were not additive indicating that both compounds were displacing TIF from the same site i.e., a common nucleotide binding site. Glc, mannose, and 2-deoxyglucose greatly enhanced the ability of nucleotides to displace TIF, while fructose, galactose, and N-acetylglucosamine did not, indicating the existence of interactions between hexose and nucleotide binding sites; the hexoses themselves were not effective at displacing TIF. The enhanced binding of nucleotides in the presence of the first three hexoses but not the latter three can be directly correlated with the relative ability of these hexoses to induce specific conformational changes in the enzyme. The hexoses themselves were not effective at displacing TIF. Glucose 6-phosphate and 1,5-anhydroglucitol 6-phosphate could also displace TIF, and as with the nucleotides, a maximum of approximately 70% decrease in fluorescence was observed and the effectiveness of glucose 6-phosphate was enhanced in the presence of Glc. Other hexose 6-phosphates tested were not effective at displacing TIF. The specificity with which hexose 6-phosphates displaced TIF could be correlated with their ability to induce specific conformational change in the enzyme. The results are discussed as they relate to the kinetic mechanism and allosteric regulation by nucleotides that have been proposed for this enzyme.  相似文献   

3.
2-Deoxy-D-glucose uptake in cultured human muscle cells   总被引:1,自引:0,他引:1  
Hexose uptake was studied with cultured human muscle cells using 2-deoxy-D-[1-3H]glucose. At a concentration of 0.25 and 4 mM, phosphorylation rather than transport was the rate-limiting step in the uptake of 2-deoxy-D-glucose. This was not due to inhibition of the hexokinase activity by either ATP depletion or 2-deoxyglucose 6-phosphate accumulation. In cellular homogenates, hexokinase showed a lower Km value for glucose as compared to 2-deoxyglucose. Intact cells preferentially phosphorylated glucose instead of 2-deoxyglucose. Therefore, transport instead of phosphorylation may be rate limiting in the uptake of glucose by cultured human muscle cells. These data suggest caution in using 2-deoxyglucose for measuring glucose transport.  相似文献   

4.
Glucose transport across the plasma membrane of isolated bovine rod outer segments (ROS) was measured by uptake of 14C-labeled 3-O-methylglucose and 2-deoxyglucose and was inferred from deenergization of ROS with 2-deoxyglucose. Glucose transport was mediated by a facilitated diffusion glucose transporter that equilibrated external and internal free hexose concentrations. Glucose transport in ROS displayed two components as judged from kinetic analysis of hexose equilibration and as judged from inhibition by cytochalasin B and phloretin. Transport under exchange conditions was considerably faster as compared with net hexose uptake, similar to that observed for the erythrocyte glucose transporter. Sensitivity to cytochalasin B and affinity to 3-O-methylglucose were similar to those observed for the hepatocyte glucose transporter. The cytochalasin-insensitive component appears unique to ROS and did not reflect leakage transport as judged from a comparison with L-glucose uptake. Glucose transport feeds glycolysis localized to ROS. We suggest that a major role for glycolysis in ROS is phosphorylation of GDP to GTP via pyruvate kinase and PEP, while phosphorylation of ADP to ATP can use the creatine kinase/phosphocreatine pathway as well.  相似文献   

5.
The interactions between a beta-adrenoceptor agonist (isoprenaline) and insulin on rates of hexose transport, glucose phosphorylation, glycogen synthesis and glycogenolysis were investigated in the incubated stripped soleus-muscle preparation of the rat. In the presence of 1 microM-isoprenaline, insulin was less effective in stimulating glucose phosphorylation and glycogen synthesis. The stimulation of glycogenolysis by isoprenaline was only slightly decreased even at high (10000 microunits/ml) concentrations of insulin. Insulin-stimulated phosphorylation of 2-deoxyglucose was decreased by isoprenaline. It is suggested that this decrease in the rate of glucose phosphorylation is caused by the observed elevated concentration of glucose 6-phosphate, which inhibits hexokinase activity. This conclusion is supported by the fact that isoprenaline had no effect on the stimulation of 3-O-methylglucose transport by insulin.  相似文献   

6.
In peach trees (Prunus persica L. Batsch cv. Redhaven), sorbitol is a primary photosynthetic product and may play an important role in the budbreak process. Surprisingly, before budbreak (from January to early March), the concentration of sorbitol in the xylem sap decreases, while that of hexoses (glucose and fructose) increases. The aim of this work was to study the control of sorbitol uptake into vegetative buds by hexoses. Sorbitol uptake was selectively inhibited by hexoses at low and physiological concentrations and this effect was both reversible and concentration-dependent. In addition, the active uptake of sorbitol significantly declined in the plasma membrane vesicles-enriched fraction purified from glucose-treated vegetative buds, suggesting that the inhibitory action of glucose was at the membrane level. Finally, among several glucose analogues tested, only hexokinase substrates (2-deoxyglucose and mannose) were able to mimic the glucose effect, which was completely blocked by the hexokinase inhibitor mannoheptulose. These results represent the first steps towards a better understanding of polyol transport control in plants.  相似文献   

7.
Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes   总被引:5,自引:0,他引:5  
In the present study we examined the role of glucose in the regulation of its own transport activity in the cultured 3T3 fat cell. A regulatory control of glucose became apparent after these cells were cultured in the absence of glucose. Glucose deprivation of the cells was accompanied by a specific time and protein synthesis-dependent increase in dGlc (2-deoxyglucose) uptake (up to 5-fold), which was due to an increase in the apparent Vmax of the transport system. Concomitantly, the stimulatory effect of insulin on hexose uptake almost completely disappeared. Addition of glucose to the glucose-deprived cells rapidly reversed the deprivation effects. Cycloheximide experiments revealed that the glucose deprivation-induced increase in hexose uptake required protein synthesis as well as a protein synthesis-independent response to glucose deprivation that retarded the turnover of hexose transport activity. Taken together, these data indicate that glucose deprivation is accompanied by retardation of the rate of degradation, internalization, or inactivation of hexose transporters while the increase in dGlc uptake requires at least the continuation of protein synthesis-dependent de novo synthesis, insertion, or activation of hexose transporters. Hexose competitively taken up with dGlc, including the nonmetabolizable glucose analogue 3-O-methylglucose, could replace glucose in the process of prevention and reversal of the deprivation effects, indicating that competitive transport but not the metabolism of hexose is a prerequisite for the regulatory effect of glucose on the activity of its own transport system. In conclusion, our results indicate that in cultured 3T3 fat cells glucose itself is involved in the regulation of the activity of its own transport system by influencing the rate of degradation, internalization, or inactivation of hexose transporters by a protein synthesis-independent mechanism.  相似文献   

8.
To use primary cultures of human skeletal muscle cells to establish defects in glucose metabolism that underlie clinical insulin resistance, it is necessary to define the rate-determining steps in glucose metabolism and to improve the insulin response attained in previous studies. We modified experimental conditions to achieve an insulin effect on 3-O-methylglucose transport that was more than twofold over basal. Glucose phosphorylation by hexokinase limits glucose metabolism in these cells, because the apparent Michaelis-Menten constant of coupled glucose transport and phosphorylation is intermediate between that of transport and that of the hexokinase and because rates of 2-deoxyglucose uptake and phosphorylation are less than those of glucose. The latter reflects a preference of hexokinase for glucose over 2-deoxyglucose. Cellular NAD(P)H autofluorescence, measured using two-photon excitation microscopy, is both sensitive to insulin and indicative of additional distal control steps in glucose metabolism. Whereas the predominant effect of insulin in human skeletal muscle cells is to enhance glucose transport, phosphorylation, and steps beyond, it also determines the overall rate of glucose metabolism.  相似文献   

9.
When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.Abbreviations 2,4-DNP 2,4-dinitrophenol - 2-DOG 2-deoxyglucose - 6-DOG 6-deoxyglucose - pCMB para-hydroxymercuribenzoate  相似文献   

10.
The cellular basis of the membrane-limited state of glucose utilization and the mechanism of the endogenous regulation of hexose uptake in dense monolayers of C6 glioma cells were investigated. In an earlier study, it was shown that at high rates of glucose transport and phosphorylation combined with the inhibition of glycolytic adenosine triphosphate (ATP) production by iodoacetate, an endogenous regulatory response occurred that resulted in rapid, periodic variations of the glucose uptake rates (Lange et al., 1982). Similar time-dependent periodic changes of uptake rates also occurred during incubation of C6 glioma cells with 2 mM 2-deoxyglucose (2-DG) without pretreatment of the cells with iodoacetate. These changes were accompanied by variations of the intracellular ATP content, by distinct alterations of the shape and arrangement of microvilli and lamellae (lamellipodia) on the cell surface, and by changes of the cytoskeletal F-actin content. Because the changes of 2-DG uptake rates occurred independent of the intracellular 2-DG concentration, the bulk of this 2-DG pool was assumed to be localized apart from the membranal transport sites. Downregulation of 2-DG uptake appeared to be triggered by a rapid decrease of a small pool of the cellular ATP involved in the phosphorylation of transported hexose. Scanning and transmission electron microscopic observations of cells fixed in different states of the endogenous uptake regulation supported the assumption that the interior of lamellae and microvilli may represent a small entrance compartment for transported hexoses in which occurred the observed close coupling between hexose transport and phosphorylation as well as the rapid variations of ATP content. Hexose uptake is supposed to be regulated by cytoskeleton-mediated changes of volume and diffusional accessibility of this compartment, modulating the degree of its metabolic coupling with the cytoplasmic main compartment.  相似文献   

11.
2-Deoxyglucose and 3-O-methyglucose were used to assess endotoxin-induced changes in glucose transport in rat adipocytes. 6 h after Escherichia coli endotoxin injection insulin-stimulated 2-deoxyglucose uptake was significantly depressed (V decreased, Kmunaltered), phosphorylation of 2-deoxyglucose was seemingly unimpaired; basal 3-methylglucose entry was significantly increased, insulin-stimulated uptake was unaltered. Insulin significantly reduced Km in control and endotoxin-treated cells. Cytochalasin B-insensitive uptake of both 2-deoxyglucose and 3-methylglucose, a small fraction of total transport, increased significantly in endotoxic cells. Endotoxin reduced spermine- and insulin-stimulated 2-deoxyglucose uptake to a similar extent. Results are consistent with the hypotheses that (1) a site of endotoxin-induced insulin resistance is at the cell membrane level and may reflect a decrease in number or activity of effective carrier units, rather than alterations in affinity, (2) endotoxin does not compromise the hexokinase system, (3) the cell membrane-localized effect of endotoxin on hexose transport is not necessarily mediated by the insulin receptor and (4) the entry of 2-deoxyglucose and 3-methylglucose may involve two separate transport systems.  相似文献   

12.
Embryonic chick heart cells in culture transport 2-deoxy-D-glucose and 3-O-methyl-D-glucose very rapidly. By direct measurements of uptake, it was not possible to estimate accurately transport rates, nor, with 2-deoxyglucose, to discriminate clearly between its transport and phosphorylation. In contrast, the technique of countertransport made it possible to determine precisely initial transport velocity and to make the following observations: (1) phosphorylation, and not transport, is rate-limiting in 2-deoxyglucose uptake; (2) hexose transport is stimulated 5-fold by removal of glucose from culture medium; and (3) this stimulation is followed by an increase in phosphorylation, but the effect is much less pronounced (2-fold stimulation only). In conclusion, the adaptative regulation of glucose transport described in many fibroblast cell lines exists also in cardiac cells.  相似文献   

13.
Glucose uptake is autoregulated in a variety of cell types and it is thought that glucose transport is the major step that is subjected to control by sugar availability. Here, we examined the effect of high glucose concentrations on the rate of glucose uptake by human ECV-304 umbilical vein-derived endothelial cells. A rise in the glucose concentration in the medium led a dose-dependent decrease in the rate of 2-deoxyglucose uptake. The effect of high glucose was independent of protein synthesis and the time-course analysis indicated that it was relatively slow. The effect was not due to inhibition of glucose transport since neither the expression nor the subcellular distribution of the major glucose transporter GLUT1, nor the rate of 3-O-methylglucose uptake was affected. The total in vitro assayed hexokinase activity and the expression of hexokinase-I were similar in cells treated or not with high concentrations of glucose. In contrast, exposure of cells to a high glucose concentration caused a marked decrease in phosphorylated 2-deoxyglucose/free 2-deoxyglucose ratio. This suggests the existence of alterations in the rate of in vivo glucose phosphorylation in response to high glucose. In summary, we conclude that ECV304 human endothelial cells reduce glucose utilization in response to enhanced levels of glucose in the medium by inhibiting the rate of glucose phosphorylation, rather than by blocking glucose transport. This suggests a novel metabolic effect of high glucose on cellular glucose utilization.  相似文献   

14.
15.
A nonradioisotope, 96-well-microplate assay to evaluate glucose uptake activity in cultured cells has been developed. 2-Deoxyglucose (2DG) was detected by measuring a potent fluorophore, resorufin, generated after incubation with a single assay solution containing hexokinase, adenosine 5'-triphosphate, glucose 6-phosphate dehydrogenase, beta-nicotineamide adenine dinucleotide phosphate, diaphorase, and resazurin. This amplifying detection system could detect the fluorescence intensity induced by uptake of 2DG into L6 skeletal muscle cells, even at the level of cells cultivated in individual wells in a 96-well microplate. Using this assay system, the effects of insulin, cytochalasin B (hexose uptake inhibitor), LY294002 (inhibitor of glucose transporter translocation), and pioglitazone hydrochloride (insulin-sensitizing agent) on 2DG uptake into L6 myotubes could be assessed clearly. Therefore, our simple method may be useful for in vitro high-throughput screening and for evaluating regulators of glucose uptake.  相似文献   

16.
The possible involvement of a 15-kDa phosphotyrosyl protein, pp15, in insulin action was investigated by using the insulin-mimetic agent, vanadate. Vanadate, a phosphotyrosine phosphatase inhibitor, was found to mimic insulin in 3T3-L1 adipocytes by three criteria. First, kinetic and concentration-dependence studies verified the insulin-like effect of vanadate in activating 2-deoxyglucose uptake. Insulin had an additive activating effect at a submaximal vanadate concentration, but showed no further activation at a saturating vanadate concentration. The trivalent arsenical, phenylarsine oxide (PAO) which forms complexes with vicinal dithiols, markedly inhibited vanadate-activated hexose transport in agreement with our previous studies in which PAO abolished the insulin-activated component of sugar uptake. Second, in situ phosphorylation experiments showed that vanadate activated tyrosine phosphorylation of the insulin receptor's beta-subunit. Exposure of vanadate-treated cells to PAO further increased the level of beta-subunit phosphorylation. The increased level of phosphorylation in the presence of PAO occurred only on tyrosyl residues. Third, vanadate caused the accumulation of a phosphorylated 15-kDa protein in the presence of PAO, but not in its absence. The characteristics of this protein were identical to those of pp15: 1) both proteins behaved identically by two-dimensional gel electrophoresis, 2) digestion of both proteins with trypsin gave rise to apparently identical phosphopeptides, and 3) both proteins contained phosphotyrosine as the only phosphoamino acid. The results indicate that both vanadate and insulin stimulate the accumulation of pp15 in the presence of PAO. The dithiol,2,3-dimercaptopropanol, but not a monothiol, reversed the effects of PAO on the inhibition of vanadate-induced hexose transport and the accumulation of pp15, thus implicating a vicinal dithiol in these actions of vanadate and insulin. Our results support the hypothesis that turnover of the phosphoryl group of pp15, a product of insulin receptor tyrosine kinase action, is coupled to signal transmission to the glucose transport system.  相似文献   

17.
It has previously been shown that phenylarsine oxide (PhAsO), an inhibitor of protein internalization, also inhibits stereospecific uptake of D-glucose and 2-deoxyglucose in both basal and insulin-stimulated rat adipocytes. This inhibition of hexose uptake was found to be dose-dependent. PhAsO rapidly inhibited sugar transport into insulin-stimulated adipocytes, but at low concentrations inhibition was transient. Low doses of PhAsO (1 microM) transiently inhibit stereospecific hexose uptake and near total (approx. 90%) recovery of transport activity occurs within 20 min. Interestingly, once recovered, the adipocytes can again undergo rapid inhibition and recovery of transport activity upon further treatment with PhAsO (1 microM). In addition, PhAsO is shown to inhibit cytochalasin B binding to plasma membranes from insulin-stimulated adipocytes in a concentration-dependent manner which parallels the dose-response inhibition of hexose transport by PhAsO. The data presented suggest a direct interaction between the D-glucose transporter and PhAsO, resulting in inhibition of transport. The results are consistent with the current recruitment hypothesis of insulin activation of sugar transport and indicate that a considerable reserve of intracellular glucose carriers exists within fat cells.  相似文献   

18.
《The Journal of cell biology》1990,111(5):1753-1762
We have examined the effects of topoisomerase inhibitors on the phosphorylation of histones in chromatin during the G2 and the M phases of the cell cycle. Throughout the G2 phase of BHK cells, addition of the topoisomerase II inhibitor VM-26 prevented histone H1 phosphorylation, accompanied by the inhibition of intracellular histone H1 kinase activity. However, VM-26 had no inhibitory effect on the activity of the kinase in vitro, suggesting an indirect influence on histone H1 kinase activity. Entry into mitosis was also prevented, as monitored by the absence of nuclear lamina depolymerization, chromosome condensation, and histone H3 phosphorylation. In contrast, the topoisomerase I inhibitor, camptothecin, inhibited histone H1 phosphorylation and entry into mitosis only when applied at early G2. In cells that were arrested in mitosis, VM-26 induced dephosphorylation of histones H1 and H3, DNA breaks, and partial chromosome decondensation. These changes in chromatin parameters probably reverse the process of chromosome condensation, unfolding condensed regions to permit the repair of strand breaks in the DNA that were induced by VM- 26. The involvement of growth-associated histone H1 kinase in these processes raises the possibility that the cell detects breaks in the DNA through their effects on the state of DNA supercoiling in constrained domains or loops. It would appear that histone H1 kinase and topoisomerase II work coordinately in both chromosome condensation and decondensation, and that this process participates in the VM-26- induced G2 arrest of the cell.  相似文献   

19.
Glut-1-mediated glucose transport is augmented in response to a variety of conditions and stimuli. In this study we examined the metabolic fate of glucose in cells in which glucose transport is stimulated by exposure to CoCl(2), an agent that stimulates the expression of a set of hypoxia-responsive genes including several glycolytic enzymes and the Glut-1 glucose transporter. Similarly, we determined the metabolic fate of glucose in stably transfected cells overexpressing Glut-1. Exposure of Clone 9 liver cell line, 3T3-L1 fibroblasts, and C(2)C(12) myoblasts to CoCl(2) resulted in an increase glucose uptake and in the activity of glucose phosphorylation ("hexokinase") and lactate dehydrogenase. In cells treated with CoCl(2), the net increase in glucose taken up was accounted for by its near-complete conversion to lactate. Cells stably transfected to overexpress Glut-1 also exhibited enhanced net uptake of glucose with the near-complete conversion of the increased glucose taken up to lactate; however, the effect in these cells was observed in the absence of any change in the activity of two glycolytic enzymes examined. These findings suggest that in cells in which glucose transport is rate-limiting for glucose metabolism, enhancement of the glucose entry step per se results in a near-complete conversion of the extra glucose to lactate.  相似文献   

20.
Postmeiotic spermatogenic cells, but not meiotic spermatogenic cells respond differentially with glucose-induced changes in [Ca2+]i indicating a differential transport of glucose via facilitative hexose transporters (GLUTs) specifically distributed in the plasma membrane. Several studies have indicated that plasma membrane in mammalian cells is not homogeneously organized, but contains specific microdomains known as detergent-resistant membrane domains (DRMDs), lipid rafts or caveolae. The association of these domains and GLUTs isoforms has not been characterized in spermatogenic cells. We analyzed the expression and function of GLUT1 and GLUT3 in isolated spermatocytes and spermatids. The results showed that spermatogenic cells express both glucose transporters, with spermatids exhibiting a higher affinity glucose transport system. In addition, spermatogenic cells express caveolin-1, and glucose transporters colocalize with caveolin-1 in caveolin-enriched membrane fractions. Experiments in which the integrity of caveolae was disrupted by pretreatment with methyl-beta-cyclodextrin, indicated that the involvement of cholesterol-enriched plasma membrane microdomains were involved in the localization of GLUTs and uptake of 2-deoxyglucose. We also observed cofractionation of GLUT3 and caveolin-1 in low-buoyant density membranes together with their shift to higher densities after methyl-beta-cyclodextrin treatment. GLUT1 was found in all fractions isolated. Immunofluorescent studies indicated that caveolin-1, GLUT1, and hexokinase I colocalize in spermatocytes while caveolin-1, GLUT3, and hexokinase I colocalize in spermatids. These findings suggest the presence of hexose transporters in DRMDs, and further support a role for intact caveolae or cholesterol-enriched membrane microdomains in relation to glucose uptake and glucose phosphorylation. The results would also explain the different glucose-induced changes in [Ca2+]i in both cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号