首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite many studies, the evidence as to whether radiofrequency fields are detrimental to health remains controversial, and the debate continues. Cells respond to some abnormal physiological conditions by producing cytoprotective heat-shock (or stress) proteins. The aim of this study was to determine whether exposure to mobile phone-type radiation causes a nonthermal stress response in human leukocytes. Human peripheral blood was sham-exposed or exposed to 900 MHz fields (continuous-wave or GSM-modulated signal) at three average specific absorption rates (0.4, 2.0 and 3.6 W/kg) for different durations (20 min, 1 h and 4 h) in a calibrated TEM cell placed in an incubator to give well-controlled atmospheric conditions at 37 degrees C and 95% air/5% CO(2). Positive (heat-stressed at 42 degrees C) and negative (kept at 37 degrees C) control groups were incubated simultaneously in the same incubator. Heat caused an increase in the number of cells expressing stress proteins (HSP70, HSP27), measured using flow cytometry, and this increase was dependent on time. However, no statistically significant difference was detected in the number of cells expressing stress proteins after RF-field exposure. These results suggest that mobile phone-type radiation is not a stressor of normal human lymphocytes and monocytes, in contrast to mild heating.  相似文献   

2.
Human peripheral blood leukocytes from healthy volunteers have been employed to investigate the induction of genotoxic effects following 2 h exposure to 900 MHz radiofrequency radiation. The GSM signal has been studied at specific absorption rates (SAR) of 0.3 and 1 W/kg. The exposures were carried out in a waveguide system under strictly controlled conditions of both dosimetry and temperature. The same temperature conditions (37.0 +/- 0.1 degrees C) were realized in a second waveguide, employed to perform sham exposures. The induction of DNA damage was evaluated in leukocytes by applying the alkaline single cell gel electrophoresis (SCGE)/comet assay, while structural chromosome aberrations and sister chromatid exchanges were evaluated in lymphocytes stimulated with phytohemagglutinin. Alterations in kinetics of cell proliferation were determined by calculating the mitotic index. Positive controls were also provided by using methyl methanesulfonate (MMS) for comet assay and mitomycin-C (MMC), for chromosome aberration, or sister chromatid exchange tests. No statistically significant differences were detected in exposed samples in comparison with sham exposed ones for all the parameters investigated. On the contrary, the positive controls gave a statistically significant increase in DNA damage in all cases, as expected. Thus the results obtained in our experimental conditions do not support the hypothesis that 900 MHz radiofrequency field exposure induces DNA damage in human peripheral blood leukocytes in this range of SAR.  相似文献   

3.
Whole human blood was exposed or sham-exposed in vitro for 2 h to 27 or 2,450 MHz radio-frequency electromagnetic (RF) radiation under isothermal conditions (i.e., 37 +/- 0.2 degrees C). Immediately after exposure, mononuclear cells were separated from blood by Ficoll density-gradient centrifugation and cultured for 3 days at 37 degrees C with or without mitogenic stimulation by phytohemagglutinin (PHA). Lymphocyte proliferation was assayed at the end of the culture period by 6 h of pulse labeling with 3H-thymidine (3H-TdR). Exposure to radiation at either frequency at specific absorption rates (SARs) below 50 W/kg resulted in a dose-dependent, statistically significant increase of 3H-TdR uptake in PHA-activated or unstimulated lymphocytes. Exposure at 50 W/kg or higher suppressed 3H-TdR uptake relative to that of sham-exposed cells. There were no detectable effects of RF radiation on lymphocyte morphology or viability. Notwithstanding the characteristic temperature dependence of lymphocyte activation in vitro, the isothermal exposure conditions of this study warrant the conclusion that the biphasic, dose-dependent effects of the radiation on lymphocyte proliferation were not dependent on heating.  相似文献   

4.
In this study the influence of acute (6 hr) exposure to 2450 MHz (CW) microwave radiation on certain cardiovascular, biochemical, and hematologic indices was examined in unanesthetized rats. Under methoxyflurane anesthesia, a catheter was inserted into the right femoral artery, which was used for monitoring blood pressure, heart rate, and blood sampling. Colonic temperature was monitored via a VITEK thermistor probe inserted rectally to a depth of 5 cm. The rat was subsequently placed into a ventilated restraining cage which was located inside an anechoic chamber. The temperature and humidity in the chamber were maintained at 22 +/- 0.5 degrees C and 60 +/- 5% (means +/- S.E.), respectively, during the experimental period. Rats (60) were exposed to either 0 (sham) or 10 mW/cm2 (exposed) for 6 hr. During exposure rats were oriented perpendicular to the E-field, and the measured specific absorption rate (SAR) was 3.7 mW/g. In the sham and exposed rats, the preexposure (time 0) mean +/- S.E. arterial blood pressure (MABP), heart rate, and colonic temperature were approximately 120 +/- 5 mmHg, 450 +/- 10 beats/min, and 37.0 +/- 0.2 degrees C, respectively. In the sham-exposed rats these values remained stable throughout the 6-hr exposure period. In the exposed rats, no effects were noted on MABP or colonic temperature; however after 1 hr of exposure, a significant reduction in heart rate was noted (450 versus 400 beats/min). This decrease in heart rate persisted throughout the remainder of the exposure period. None of the hematologic or biochemical parameters examined were affected by the microwave exposure. Although other mechanisms may be responsible, this decrease in heart rate may have been due to subtle cardiovascular adjustments because of microwave-induced heating with a resultant reduction in resting metabolic rate.  相似文献   

5.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

6.
We have previously reported that low intensity microwave exposure (0.75-1.0 GHz CW at 0.5 W; SAR 4-40 mW/kg) can induce an apparently non-thermal heat-shock response in Caenorhabditis elegans worms carrying hsp16-1::reporter genes. Using matched copper TEM cells for both sham and exposed groups, we can detect only modest reporter induction in the latter exposed group (15-20% after 2.5 h at 26 degrees C, rising to approximately 50% after 20 h). Traceable calibration of our copper TEM cell by the National Physical Laboratory (NPL) reveals significant power loss within the cell (8.5% at 1.0 GHz), accompanied by slight heating of exposed samples (approximately 0.3 degrees C at 1.0 W). Thus, exposed samples are in fact slightly warmer (by < or =0.2 degrees C at 0.5 W) than sham controls. Following NPL recommendations, our TEM cell design was modified with the aim of reducing both power loss and consequent heating. In the modified silver-plated cell, power loss is only 1.5% at 1.0 GHz, and sample warming is reduced to approximately 0.15 degrees C at 1.0 W (i.e., < or =0.1 degrees C at 0.5 W). Under sham:sham conditions, there is no difference in reporter expression between the modified silver-plated TEM cell and an unmodified copper cell. However, worms exposed to microwaves (1.0 GHz and 0.5 W) in the silver-plated cell also show no detectable induction of reporter expression relative to sham controls in the copper cell. Thus, the 20% "microwave induction" observed using two copper cells may be caused by a small temperature difference between sham and exposed conditions. In worms incubated for 2.5 h at 26.0, 26.2, and 27.0 degrees C with no microwave field, there is a consistent and significant increase in reporter expression between 26.0 and 26.2 degrees C (by approximately 20% in each of the six independent runs), but paradoxically expression levels at 27.0 degrees C are similar to those seen at 26.0 degrees C. This surprising result is in line with other evidence pointing towards complex regulation of hsp16-1 gene expression across the sub-heat-shock range of 25-27.5 degrees C in C. elegans. We conclude that our original interpretation of a non-thermal effect of microwaves cannot be sustained; at least part of the explanation appears to be thermal.  相似文献   

7.
Two studies were performed to determine if repeated exposure of the avian egg to microwaves can alter metabolism, temperature, and growth rate of embryos. Another aim was to supplement conventional heating with microwave heating and provide an optimal temperature for growth. Japanese quail (Coturnix coturnix japonica) eggs were exposed from day 1 through 15 of incubation (8 h/day) to sham or microwave (2,450 MHz) irradiation. Microwave exposures were at two power densities, 5 or 20 mW/cm2, and at three ambient temperatures (Tas), 30.0, 33.1, or 35.4 degrees C. Specific absorption rates for unincubated and 15-day-old incubated eggs were, respectively, 0.76 and 0.66 W kg-1 mW-1 cm-2 (i.e., 3.8 and 3.3 W/kg at 5 mW/cm2 and 15.2 and 13.2 W/kg at 20 mW/cm2). Eggs were concurrently sham exposed at each of five Tas, ranging from 27.9 to 37.5 degrees C. Tests were conducted during the 16th day of incubation (i.e., 1 day post-treatment), in the absence of microwaves, to determine metabolic rate of embryos and internal and external egg temperatures at different Tas. Repeated exposures to microwaves at 5 and 20 mW/cm2 at the same Ta (30 degrees C) increased wet-embryo mass on the 16th day by an average, respectively, of 9% and 61% when compared with predicted masses for embryos exposed at the same Ta in the absence of microwave radiation. There was no reliable indication, from post-treatment tests and comparisons with control embryos of similar mass, that repeated exposure to microwave radiation resulted in abnormal physiological development. Microwave radiation can be used to increase egg temperature and embryonic growth rate at Tas below normal incubation level without altering basic metabolic and thermal characteristics of the developing bird.  相似文献   

8.
Rabbit polymorphonuclear leucocytes (PMN, neutrophils) obtained from peritoneal exudate were exposed in vitro for one-half or one hour to continuous wave or amplitude-modulated (20-Hz) 100-MHz RF radiation in a temperature-controlled coaxial exposure chamber at field strengths from 2.5 to 4.1 V/cm (SARs of 120 to 341 W/kg). RF exposure at 37 +/- 0.2 degrees C had no detectable effect on PMN viability or phagocytosis compared to sham-exposed cells simultaneously subjected to the same time-temperature regime. Temperature control studies indicated that at 37 degrees C no effect on PMN viability would be expected but phagocytosis would be reduced by approximately 6%/degrees C temperature increase. The absence of an effect of RF exposure suggests that there was minimal undetected intrasample heating and that phagocytosis was not affected by 100-MHz RF radiation under the conditions of this study.  相似文献   

9.
Four rodent cell lines were exposed to 2450 MHz microwave radiation at a Specific Absorption Rate (SAR) of 103.5 +/- 4.2 W/kg for varying lengths of time at 37 degrees, 40 degrees, 42 degrees and 45 degrees C. mRNA was extracted from microwave-exposed and sham-exposed cells and dot blotted or Northern blotted to nitrocellulose. Radioisotope labelled DNA probes of oncogenes, heat shock protein or long terminal repeat sequences were hybridized to the mRNA, and the resulting autoradiographs analyzed for differences in levels of mRNA expression between exposed and nonexposed samples. With the cell lines and probes used in this study no significant differences in mRNA expression were observed after microwave exposure.  相似文献   

10.
Currently, the potential genotoxicity of high power microwave pulses (HPMP) is not clear. Using the alkaline single cell gel electrophoresis assay, also known as the alkaline comet assay, we studied the effects of HPMP (8.8 GHz, 180 ns pulse width, peak power 65 kW, pulse repetition frequency 50 Hz) on DNA of human whole-blood leukocytes and isolated lymphocytes. The cell suspensions were exposed to HPMP for 40 min in a rectangular waveguide. The average SAR calculated from the temperature kinetics was about 1.6 kW/kg (peak SAR was about 300 MW/kg). The steady-state temperature rise in the 50 microl samples exposed to HPMP was 3.5 +/- 0.1 degrees C. In independent experiments, we did not find any statistically significant DNA damage manifested immediately after in vitro HPMP exposure of human blood leukocytes or lymphocytes or after HPMP exposure of leukocytes subsequently incubated at 37 degrees C for 30 min. Our results indicate that HPMP under the given exposure conditions did not induce DNA strand breaks, alkali-labile sites, and incomplete excision repair sites, which could be detected by the alkaline comet assay.  相似文献   

11.
Temperature regulation of microtiter plates for enzyme assays   总被引:1,自引:0,他引:1  
To facilitate the use of microtiter plates as vessels for enzyme assays, an incubator has been designed to maintain the wells of the microtiter plates at the appropriate temperature. The temperature variation within a single well was +/- 0.02 degrees (standard error of the mean) at 25 degrees C and +/- 0.02 degrees at 37 degrees C. The temperature variation was the same for internal and peripheral wells within the plates, although the internal wells were approximately 0.14 degrees C warmer than the outer wells at 25 degrees C and 0.68 degrees C cooler at 37 degrees C. The overall uncertainty (95% confidence interval) of the well temperature in a typical plate was +/- 0.4 degrees C at 25 degrees C and +/- 0.7 degrees C at 37 degrees C. This uncertainty is realistic for routine enzyme determinations, as opposed to precise studies. The incubator was designed to allow access to the plates from above so that additions could be made during the incubation. To demonstrate the suitability of microtiter plates and the incubator for enzyme determinations, this method was used to measure the activity of myeloperoxidase and alpha-naphthylbutyryl esterase.  相似文献   

12.
Acute exposure to hamsters to microwave energy (2.45 GHz; 25 mW/cm2 for 60 min) resulted in activation of peritoneal macrophages that were significantly more viricidal to vaccinia virus as compared to sham-exposed or normal (minimum-handling) controls. Macrophages from microwave-exposed hamsters became activated as early as 6 h after exposure and remained activated for up to 12 days. The activation of macrophages by microwave exposure paralleled the macrophage activation after vaccinia virus immunization. Activated macrophages from vaccinia-immunized hamsters did not differ in their viricidal activity when the hamsters were microwave- or sham-exposed. Exposure for 60 min at 15 mW/cm2 did not activate the macrophages while 40 mW/cm2 exposure was harmful to some hamsters. Average maximum core temperatures in the exposed (25 mW/cm2) and sham groups were 40.5 degrees C (+/- 0.35 SD) and 38.4 degrees C (+/- 0.5 SD), respectively. In vitro heating of macrophages to 40.5 degrees C was not as effective as in vivo microwave exposure in activating macrophages to the viricidal state. Macrophages from normal, sham-exposed, and microwave-exposed hamsters were not morphologically different, and they all phagocytosed India ink particles. Moreover, immune macrophage cytotoxicity for virus-infected or noninfected target cells was not suppressed in the microwave-irradiated group (25 mW/cm2, 1 h) as compared to sham-exposed controls, indicating that peritoneal macrophages were not functionally suppressed or injured by microwave hyperthermia.  相似文献   

13.
In an effort to understand microwave heating better, regional brain and core temperatures of rats exposed to microwave radiation (2450 MHz) or elevated air temperatures were measured in two studies. In general, we have found no substantial evidence for temperature differentials, or "hot spots," in the brain of these animals. In the first study, after a 30-min exposure, no temperature differences between brain regions either after microwave or ambient air exposure were found. However, a highly significant correlation between brain and core temperatures was found and this correlation was the same for both microwave and ambient air heating. In the second study, time-temperature profiles were measured in rats exposed to either 30 mW/cm2 or 36.2 degrees C. In this study, the 30-min exposure period was divided into seven intervals and the change in temperature during each period was analyzed. Only the cortex showed significantly different heating rates between the air heating and microwave heating; however, this difference disappeared after the initial 5 min of exposure.  相似文献   

14.
The chronotropic and inotropic effects of 2.45-GHz continuous wave (CW) microwave radiation were investigated in the isolated spontaneously beating rat atria. Isolated atria were placed in specially designed tubes inserted into a waveguide exposure system. The atria were then irradiated for a period of 30 min, followed by a 30-min recovery period. The control atria were prepared simultaneously and sham exposed. Experiments were conducted at two temperatures, 22 and 37 °C, and two specific absorption rates, 2 mW/g and 10 mW/g. At both temperatures the rate of atrial contraction was not altered by a 30-min exposure at either 2 or 10 mW/g. The average rate (beats per min) was approximately 100 for both the control and exposed atria at 22 °C and 215 beats per min for both the control and exposed atria at 37 °C. In addition, no inotropic effects on the spontaneously beating atria were noted at any exposure level. These data suggest that 2.45-GHz CW microwave radiation at these intensities has no overt effect on these variables in isolated rat atria.  相似文献   

15.
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

16.
The induction of stress proteins in HeLa and CHO cells was investigated following a 2 h exposure to radiofrequency (RF) or microwave radiation. Cells were exposed or sham exposed in vitro under isothermal (37 ± 0.2 °C) conditions. HeLa cells were exposed to 27- or 2450 MHz continuous wave (CW) radiation at a specific absorption rate (SAR) of 25 W/kg. CHO cells were exposed to CW 27 MHz radiation at a SAR of 100 W/kg. Parallel positive control studies included 2 h exposure of HeLa or CHO cells to 40 °C or to 45 μM cadmium sulfate. Stress protein induction was assayed 24 h after treatment by electrophoresis of whole-cell extracted protein labeled with [35S]-methionine. Both cell types exhibited well-characterized responses to the positive control stresses. Under these exposure conditions, neither microwave nor RF radiation had a detectable effect on stress protein induction as determined by either comparison of RF-exposed cells with sham-exposed cells or comparison with heat-stressed or Cd++ positive control cells. Bioelectromagnetics 18:499–505, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The aim of this study is to investigate if 1,800 MHz radiofrequency electromagnetic fields (RF-EMF) can induce reactive oxygen species (ROS) release and/or changes in heat shock protein 70 (Hsp70) expression in human blood cells, using different exposure and co-exposure conditions. Human umbilical cord blood-derived monocytes and lymphocytes were used to examine ROS release after exposure to continuous wave or different GSM signals (GSM-DTX and GSM-Talk) at 2 W/kg for 30 or 45 min of continuous or intermittent (5 min ON/5 min OFF) exposure. The cells were exposed to incubator conditions, to sham, to RF-EMF, or to chemicals in parallel. Cell stimulation with the phorbol ester phorbol-12-myristate-13-acetate (PMA; 1 μM) was used as positive control for ROS release. To investigate the effects on Hsp70 expression, the human monocytes were exposed to the GSM-DTX signal at 2 W/kg for 45 min, or to heat treatment (42°C) as positive control. ROS production and Hsp70 expression were determined by flow cytometric analysis. The data were compared to sham and/or to control values and the statistical analysis was performed by the Student’s t-test (P<0.05). The PMA treatment induced a significant increase in ROS production in human monocytes and lymphocytes when the data were compared to sham or to incubator controls. After continuous or intermittent GSM-DTX signal exposure (2 W/kg), a significantly different ROS production was detected in human monocytes if the data were compared to sham. However, this significant difference appeared due to the lowered value of ROS release during sham exposure. In human lymphocytes, no differences could be detected if data were compared either to sham or to incubator control. The Hsp70 expression level after 0, 1, and 2 h post-exposure to GSM-DTX signal at 2 W/kg for 1 h did not show any differences compared to the incubator or to sham control.  相似文献   

18.
Normal human lymphocytes were isolated from the peripheral blood of healthy donors. One-ml samples containing (10(6)) cells in chromosome medium 1A were exposed for 5 days to conventional heating or to continuous wave (CW) or pulsed wave (PW) 2450-MHz radiation at non-heating (37 degrees C) and various heating levels (temperature increases of 0.5, 1.0, 1.5, and 2 degrees C). The pulsed exposures involved 1-microsecond pulses at pulse repetition frequencies from 100 to 1,000 pulses per second at the same average SAR levels as the CW exposures. Actual average SARs ranged to 12.3 W/kg. Following termination of the incubation period, spontaneous lymphoblastoid transformation was determined with an image analysis system. The results were compared among each of the experimental conditions and with sham-exposed cultures. At non-heating levels, CW exposure did not affect transformation. At heating levels both conventional and CW heating enhanced transformation to the same extent and correlate with the increases in incubation temperature. PW exposure enhanced transformation at non-heating levels. This finding is significant (P less than .002). At heating levels PW exposure enhanced transformation to a greater extent than did conventional or CW heating. This finding is significant at the .02 level. We conclude that PW 2450-MHz radiation acts differently on the process of lymphoblastoid transformation in vitro compared with CW 2450-MHz radiation at the same average SARs.  相似文献   

19.
Normal mouse B lymphocytes were tested for the ability to cap plasma membrane antigen-antibody complexes following exposure to 2.45-GHz continuous wave (CW) microwaves at power densities up to 100 mW/cm2 (45 W/kg specific absorption rate), at 37, 41, and 42.5 degrees C. After a 30-minute treatment, the irradiated cells and the nonirradiated controls were tested for capping by the direct immunofluorescence technique. First, the cells were incubated for nine minutes at 37 degrees C with fluorescein isothiocyanate-conjugated goat antimouse immunoglobulin. After fixing and washing, the percentage of capped cells was determined under a fluorescence microscope. The results show that for the nonirradiated controls, capping is reduced from 90% at 37 degrees C, to 52% at 41 degrees C, to less than 5% for cells that were pretreated at 42.5 degrees C. There was no significant difference between the microwave-treated cells and the controls when both were maintained at the same temperature. In another experiment, there was no significant difference in the percentage of capping between controls and cells that were exposed to microwave radiation during capping, when the temperature in both preparations was kept at 38.5 degrees C. The results demonstrate that B-lymphocyte capping is sensitive to temperature in the range that is proposed for use in tumor therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号