首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

2.
We report the design, synthesis, and characterization of molecular beacons (MB) consisting of three distinct fluorophores, 6-carboxyfluorescein (Fam), N,N,N',N'-tetramethyl-6-carboxyrhodamine (Tam), and Cyanine-5 (Cy5). The primary light absorber/energy donor (Fam) is located on one terminus of the MB, whereas the primary energy acceptor/secondary donor (Tam) and secondary acceptor (Cy5) are located at the other terminus of the MB. In the absence of target DNA or RNA, the MB exists in the stem-closed form. Excitation of Fam initiates an energy transfer cascade from Fam to Tam and further to Cy5 generating unique fluorescence signatures defined as the ratio of the emission from each of the three fluorophores. This energy transfer cascade was investigated in detail by steady-state and time-resolved fluorescence spectroscopy, as well as fluorescence depolarization studies. In the presence of the complementary target DNA, the MB opened efficiently and hybridized with the target separating Fam and Tam by a large distance, so that energy transfer from Fam to Tam was blocked in the stem-open form. This opening of the MB generates a "bar code" fluorescence signature, which is different from the signature of the stem-closed MB. The fluorescence signature of this combinatorial fluorescence energy transfer MB can be tuned by variation of the spacer length between the individual fluorophores.  相似文献   

3.
DNA primer sets, labeled with two fluorescent dyes to exploit fluorescence energy transfer (ET), can be efficiently excited with a single laser line and emit strong fluorescence at distinctive wavelengths. Such ET primers are superior to single fluorophore-labeled primers for DNA sequencing and other multiple color-based analyses [J. Ju, C. Ruan, C. W. Fuller, A. N. Glazer and R. A. Mathies (1995) Proc. Natl. Acad. Sci. USA 92, 4347-4351]. We describe here a novel method of constructing fluorescent primers using a universal ET cassette that can be incorporated by conventional synthesis at the 5'-end of an oligonucleotide primer of any sequence. In this cassette, the donor and acceptor fluorophores are separated by a polymer spacer (S6) formed by six 1',2'-dideoxyribose phosphate monomers (S). The donor is attached to the 5' side of the ribose spacer and the acceptor to a modified thymidine attached to the 3' end of the ribose spacer in the ET cassette. The resulting primers, labeled with 6-carboxy-fluorescein as the donor and other fluorescein and rhodamine dyes as acceptors, display well-separated acceptor emission spectra with 2-12-fold enhanced fluorescence intensity relative to that of the corresponding single dye-labeled primers. With single- stranded M13mp18DNA as the template, a typical run with these ET primers on a capillary sequencer provides DNA sequences with 99% accuracy in the first 550 bases using the same amount of DNA template as that typically required using a four-color slab gel automated sequencer.  相似文献   

4.
5.
We used electron-beam lithography to fabricate chemical nanostructures, i.e. amino groups in aromatic self-assembled monolayers (SAMs) on gold surfaces. The amino groups are utilized as reactive species for mild covalent attachment of fluorescently labeled proteins. Since non-radiative energy transfer results in strong quenching of fluorescent dyes in the vicinity of the metal surfaces, different labeling strategies were investigated. Spacers of varying length were introduced between the gold surface and the fluorescently labeled proteins. First, streptavidin was directly coupled to the amino groups of the SAMs via a glutaraldehyde linker and fluorescently labeled biotin (X-Biotin) was added, resulting in a distance of approximately 2 nm between the dyes and the surface. Scanning confocal fluorescence images show that efficient energy transfer from the dye to the surface occurs, which is reflected in poor signal-to-background (S/B) ratios of approximately 1. Coupling of a second streptavidin layer increases the S/B-ratio only slightly to approximately 2. The S/B-ratio of the fluorescence signals could be further increased to approximately 4 by coupling of an additional fluorescently labeled antibody layer. Finally, we introduced tetraethylenepentamine as functional spacer molecule to diminish fluorescence quenching by the surface. We demonstrate that the use of this spacer in combination with multiple antibody layers enables the controlled fabrication of highly fluorescent three-dimensional nanostructures with S/B-ratios of >20. The presented technique might be used advantageously for the controlled three-dimensional immobilization of single protein or DNA molecules and the well-defined assembly of protein complexes.  相似文献   

6.
Single molecule FRET for the study on structural dynamics of biomolecules   总被引:2,自引:0,他引:2  
Single molecule fluorescence resonance energy transfer (FRET) is the technique that has been developed by combining FRET measurement and single molecule fluorescence imaging. This technique allows us to measure the dynamic changes of the interaction and structures of biomolecules. In this study, the validity of the method was tested using fluorescence dyes on double stranded DNA molecules as a rigid spacer. FRET signals from double stranded DNA molecules were stable and their average FRET values provided the distance between the donor and acceptor in agreement with B-DNA type helix model. Next, the single molecule FRET method was applied to the studies on the dynamic structure of Ras, a signaling protein. The data showed that Ras has multiple conformational states and undergoes transition between them. This study on the dynamic conformation of Ras provided a clue for understanding the molecular mechanism of cell signaling switches.  相似文献   

7.
A high throughput method for genome-wide analysis of retroviral integration   总被引:1,自引:0,他引:1  
Retroviral and lentiviral vectors integrate their DNA into the host cell genome leading to stable transgene expression. Integration preferentially occurs in the proximity of active genes, and may in some case disturb their activity, with adverse toxic consequences. To efficiently analyze high numbers of lentiviral insertion sites in the DNA of transduced cells, we developed an improved high-throughput method called vector integration tag analysis (VITA). VITA is based on the identification of Genomic Tags associated to the insertion sites, which are used as signatures of the integration events. We use the capacity of MmeI to cleave DNA at a defined distance of its recognition site, in order to generate 21 bp long tags from libraries of junction fragments between vector and cellular DNA. The length of the tags is sufficient in most cases, to identify without ambiguity an unique position in the human genome. Concatenation, cloning and sequencing of the tags allow to obtain information about 20–25 insertion sites in a single sequencing reaction. As a validation of this method, we have characterized 1349 different lentiviral vector insertion sites in transduced HeLa cells, from only 487 sequencing reactions, with a background of <2% false positive tags.  相似文献   

8.
We have determined the picosecond fluorescence of the four aromatic amino acid residues (W28, W31, Y49, and Y70) in wild-type Escherichia coli thioredoxin (wt Trx) and a mutant Trx with W31 replaced by phenylalanine, Trx-W28-W31F. The internal motions of the four aromatic side chains were also analyzed. We examined the possibility of using internal energy transfer from tyrosine to tryptophan as a measure of long-range distances. The major features of the lifetime distribution of tryptophan fluorescence were unchanged in the W31F mutation, indicating that the environment of W28 is similar in both wt Trx and Trx-W28-W31F. However, the mutation of W31F changed the mobility of W28, situated close to the active-site disulfide/dithiol, but not the mobility of two tyrosines, Y49 and Y70, situated on the other side of the molecule. The mobility of the two tyrosine residues increased upon reduction of the active-site disulfide, indicating a looser structure with reduction. This increased motion could also be seen from molecular dynamics simulations. The change in energy transfer rates, as judged by tyrosine fluorescence lifetimes, was in agreement with energy transfer rates calculated from the molecular dynamics simulations. The anisotropy of tryptophan and tyrosine fluorescence could be separated in three parts: (I) overall rotation of the protein (10(-9)s), (II) internal mobility of side chains (10(-10)s), and (III) a very fast relaxation (10(-12)s). We can only experimentally detect this very fast relaxation when the internal motion is not present.  相似文献   

9.
A DNA duplex can be torn open at a specific position by introducing a branch or bulge to create an asymmetric three-way junction (TWJ). The opened duplex manifests a bent conformation (bending angle approximately 60 degrees , relative to the unopened form), which leads to a dramatic decrease in gel electrophoretic mobility. In the presence of a basepair mismatch at the opening position, the DNA backbone becomes less bent and assumes a distorted T-shaped structure, resulting in an increase in polyacrylamide gel electrophoretic mobility. Both conformational changes are confirmed using fluorescence resonance energy transfer experiments and found to be similar to the signature conformational changes of DNA duplex upon MutS protein binding. Our results imply that some structural rearrangements essential for mismatch recognition are achievable without protein interference. The gel electrophoretic mobility data for DNA TWJs with and without base mismatches correlates well with rotational diffusivity, computed by taking into account the conformational change of TWJ induced by base mismatch.  相似文献   

10.
We measured the kinetics of DNA bending by M.EcoRI using DNA labeled at both 5'-ends and observed changes in fluorescence resonance energy transfer. Although known to bend its cognate DNA site, energy transfer is decreased upon enzyme binding. This unanticipated effect is shown to be robust because we observe the identical decrease with different dye pairs, when the dye pairs are placed on the respective 3'-ends, the effect is cofactor- and protein-dependent, and the effect is observed with duplexes ranging from 14 through 17 base pairs. The same labeled DNA shows the anticipated increased energy transfer with EcoRV endonuclease, which also bends this sequence, and no change in energy transfer with EcoRI endonuclease, which leaves this sequence unbent. We interpret these results as evidence for an increased end-to-end distance resulting from M.EcoRI binding, mediated by a mechanism novel for DNA methyltransferases, combining DNA bending and an overall expansion of the DNA duplex. The M.EcoRI protein sequence is poorly accommodated into well defined classes of DNA methyltransferases, both at the level of individual motifs and overall alignment. Interestingly, M.EcoRI has an intercalation motif observed in the FPG DNA glycosylase family of repair enzymes. Enzyme-dependent changes in anisotropy and fluorescence resonance energy transfer have similar rate constants, which are similar to the previously determined rate constant for base flipping; thus, the three processes are nearly coincidental. Similar fluorescence resonance energy transfer experiments following AdoMet-dependent catalysis show that the unbending transition determines the steady state product release kinetics.  相似文献   

11.
We have localized 38 human brain cDNA sequences to individual human chromosomes. PCR primers were designed from expressed sequence tags and tested for specific amplification from human genomic DNA. The sizes of amplification products from DNA of somatic cell hybrid mapping panels were determined electrophoretically using an automated fluorescence detection system. Chromosomal assignments were made by discordancy analysis.  相似文献   

12.
13.
BACKGROUND: Perrin equation suggests an alternative way for the accurate energy transfer determination on a cell-by-cell basis by measuring polarized donor intensities in a conventional flow cytometer. METHODS: The relationship between energy transfer and fluorescence anisotropy of the donor was investigated by flow cytometric generation of Perrin-lifetime plots of fluorescent antibody-labeled MHC class I and class II molecules on the surface of living cells. The energy transfer reduced the fluorescence lifetime of the donor. RESULTS: Perrin plots have proven to be sensitive to the segmental mobility of the labeling dye and that of antibodies of different isotypes, and homo-transfer due to the multiple labeling of antibodies. A method demonstrating the feasibility of energy transfer determination by measuring anisotropy enhancement of the donor is presented. Flow cytometric histograms of the donor anisotropy and of the deduced energy transfer efficiency are shown, indicating clustering of MHC class I and class II molecules on the surface of human T lymphoblasts. In the Appendix, a method for the simultaneous determination of both energy transfer efficiency and donor fluorescence anisotropy, without need for G-factor measurement, is also presented. CONCLUSIONS: We demonstrate that energy transfer efficiency, i.e., proximity, between suitably selected donor and acceptor, and the rotational relaxation of the donor, i.e., donor mobility, can be simultaneously measured in a flow cytometer.  相似文献   

14.
When the hypervariable 16S-23S intergenic spacer regions found in prokaryotic ribosomal DNA (rDNA) are amplified from conserved adjacent sequences, homoduplex double-stranded DNA structures and heteroduplex structures containing substantial regions of single-stranded DNA are generated. The electrophoretic separation of these structures results in product profile patterns, which may be organized into highly correlated pattern groups of ribosomal spacer and heteroduplex polymorphism (RS/HP) types. In a test panel of 380 Salmonella strains that were analyzed by this procedure, 36 unique RS/HP types were observed. Of the 28 serovars in the test group, 21 showed single characteristic RS/HP types. The remaining seven serovars each contained multiple RS/HP types, which were also unique to individual serovars. Formation of heteroduplex structures with a substantially reduced electrophoretic mobility was observed in 29 of the 36 RS/HP pattern types. Because the mobility of these heteroduplex structures is sensitive to intergenic spacer sequence composition, the presence of these structures adds an additional diagnostic feature that is extremely useful in the differentiation of Salmonella serovars. The RS/HP types show sufficient diversity to be useful in the identification of many commonly observed Salmonella serovars. This analytical procedure is simple to perform and is well suited to rapid and inexpensive screening of large numbers of Salmonella strains.  相似文献   

15.
Fluorescently labeled oligonucleotides and DNA fragments have promise in nucleic acid research with applications that include DNA hybridization, automated DNA sequencing, fluorescence anisotropy, and resonance energy transfer studies. Past concerns with fluorescent-labeled DNA arose from interactions between fluorophores and DNA that result in quenched fluorescence. This quenching phenomenon is most problematic in fluorescence resonance energy transfer studies because quenching of the donor fluorescence could result from either resonance energy transfer or nontransfer effects. In the present study, relief of nontransfer quenching of a 14-mer fluorescein 5-isothiocyanate (FITC)-labeled oligonucleotide containing the BamHI restriction site was characterized with both steady-state and time-resolved fluorescence techniques. The FITC-labeled single strand was best fit by a triexponential decay with lifetimes of 0.5, 2.7, and 4.2 ns. The 4.2-ns component was found to contribute more than 80% of the total steady-state intensity. Upon annealing with an unmodified complementary strand, the contribution from the 4.2-ns component was significantly decreased, resulting in twofold quenching of total fluorescence. We reasoned that this quenching phenomenon should be a reversible process and could be employed to study strand separation processes in molecular biology. Hence, cleavage of the fluorescently labeled substrate was examined using DNase I and BamHI restriction endonuclease. Our results show that the quenched fluorescence is totally recovered upon cleavage (compared to that of the single strand). The extent of cleavage measured by fluorescence was confirmed by nondenaturing polyacrylamide gel electrophoresis analysis. We believe this fluorescence "dequenching" technique may be used to quantify the kinetics of other DNA strand separation and cleavage processes in molecular biology.  相似文献   

16.
Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements.  相似文献   

17.
Nanoliter scale PCR with TaqMan detection.   总被引:6,自引:0,他引:6       下载免费PDF全文
We monitored PCR in volumes of the order of 10 nl in glass microcapillaries using a fluorescence energy transfer assay in which fluorescence increases if product is made due to template-dependent nucleolytic degradation of an internally quenched probe (TaqMan assay). This assay detected single starting template molecules in dilutions of genomic DNA. The results suggest that it may be feasible to determine the number of template molecules in a sample by counting the number of positive PCRs in a set of replicate reactions using terminally diluted sample. Since the assay system is closed and potentially automatable, it has promise for clinical applications.  相似文献   

18.
To develop an analytical system for single-nucleotide polymorphisms (SNPs), the fluorescence resonance energy transfer (FRET) technique was employed on a bacterial magnetic particle (BMP) surface. A combination of fluorescein isothiocyanate (FITC; excitation 490 nm/emission 520 nm) labeled at the 5' end of DNA and an intercalating compound (POPO-3, excitation 534 nm/emission 570 nm) was used to avoid the interference from light scattering caused by nanoparticles. After hybridization between target DNA immobilized onto BMPs and FITC-labeled probes, fluorescence from POPO-3, which was excited by the energy from the FITC, was detected. The major homozygous (ALDH2*1), heterozygous (ALDH2*1/*2), and minor homozygous (ALDH2*2) genotypes in the blood samples were discriminated by this method. The assay described herein allows for a simple and rapid SNP analysis using a fully automated system.  相似文献   

19.
A new microscopic technique is demonstrated that combines attributes from both near-field scanning optical microscopy (NSOM) and fluorescence resonance energy transfer (FRET). The method relies on attaching the acceptor dye of a FRET pair to the end of a near-field fiber optic probe. Light exiting the NSOM probe, which is nonresonant with the acceptor dye, excites the donor dye introduced into a sample. As the tip approaches the sample containing the donor dye, energy transfer from the excited donor to the tip-bound acceptor produces a red-shifted fluorescence. By monitoring this red-shifted acceptor emission, a dramatic reduction in the sample volume probed by the uncoated NSOM tip is observed. This technique is demonstrated by imaging the fluorescence from a multilayer film created using the Langmuir-Blodgett (LB) technique. The film consists of L-alpha-dipalmitoylphosphatidylcholine (DPPC) monolayers containing the donor dye, fluorescein, separated by a spacer group of three arachidic acid layers. A DPPC monolayer containing the acceptor dye, rhodamine, was also transferred onto an NSOM tip using the LB technique. Using this modified probe, fluorescence images of the multilayer film reveal distinct differences between images collected monitoring either the donor or acceptor emission. The latter results from energy transfer from the sample to the NSOM probe. This method is shown to provide enhanced depth sensitivity in fluorescence measurements, which may be particularly informative in studies on thick specimens such as cells. The technique also provides a mechanism for obtaining high spatial resolution without the need for a metal coating around the NSOM probe and should work equally well with nonwaveguide probes such as atomic force microscopy tips. This may lead to dramatically improved spatial resolution in fluorescence imaging.  相似文献   

20.
The Escherichia coli lactose repressor protein (LacI) provides a classic model for understanding protein-induced DNA looping. LacI has a C-terminal four-helix bundle tetramerization domain that may act as a flexible hinge. In previous work, several DNA constructs, each containing two lac operators bracketing a sequence-induced bend, were designed to stabilize different possible looping geometries. The resulting hyperstable LacI-DNA loops exist as both a compact "closed" form with a V-shaped repressor and also a more "open" form with an extended hinge. The "9C14" construct was of particular interest because footprinting, electrophoretic mobility shift, and ring closure experiments suggested that it forms both geometries. Previous fluorescence resonance energy transfer (FRET) measurements gave an efficiency of energy transfer (ET) of 70%, confirming the existence of a closed form. These measurements could not determine whether open form or intermediate geometries are populated or the timescale of interconversion. We have now applied single-molecule FRET to Cy3, Cy5 double-labeled LacI-DNA loops diffusing freely in solution. By using multiple excitation wavelengths and by carefully examining the behavior of the zero-ET peak during titration with LacI, we show that the LacI-9C14 loop exists exclusively in a single closed form exhibiting essentially 100% ET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号