共查询到20条相似文献,搜索用时 15 毫秒
1.
Thompson DS 《Annals of botany》2008,101(2):203-211
BACKGROUND: The biomechanical behaviour of plant cells depends upon the material properties of their cell walls and, in many cases, it is necessary that these properties are quite specific. Additionally, physiological regulation may require that target cells responding to hormonal signals or environmental factors are able to modulate these characteristics. ARGUMENT: This paper uses a rheological analysis of creep of elongating sunflower (Helianthus annuus) sunflower hypocotyls to demonstrate that the mechanical behaviour of plant cell walls is complex and involves multiple layered processes that can be distinguished from one another by the time-scale over which they lead to a change in tissue dimensions, their sensitivity to pH and temperature, and their responses to changes in spatial arrangement of the cell wall brought about by treatment with high M(r) PEG. Furthermore, it appears possible to regulate individual rheological processes, with limited effect on others, in order to modulate growth without affecting tissue structural integrity. It is proposed that control of the water content of the cell wall and therefore the space between cell wall polymers may be one mechanism by which differential regulation of cell wall biomechanical properties is achieved. This hypothesis is supported by evidence showing that enzyme extracts from growing tissues can cause swelling in cell wall fragments in suspension. IMPLICATIONS: The physiological implications of this complexity are then considered for growing tissues, stomatal guard cells and abscission cells. It is noted that, in each circumstance, a different combination of mechanical properties is required and that differential regulation of properties affecting behaviour over different time-scales is often necessary. 相似文献
2.
SbPRP1 is a member of the soybean (Glycine max L. Merr) proline-rich cell wall protein family and is expressed at high levels in root tissue. To characterize the sequences required for this expression, we have fused 1.1 kb of upstream flanking DNA sequence from an SbPRP1 genomic clone to a gene encoding -glucuronidase (GUS). This construct was introduced into tobacco using Agrobacterium tumefaciens-mediated transformation. Histochemical staining of GUS activity in transgenic tobacco indicated that SbPRP1 is expressed in the apical and elongating region of both primary and lateral roots, most strongly in the epidermis. A similar localization pattern was found in transformed hairy roots when this construct was introduced into cowpea (Vigna aconitifolia) using Agrobacterium rhizogenes-mediated transformation. Nested 5-deletion analysis of the SbPRP1 promoter indicated that a minimal promoter for SbPRP1 expression in roots is located within the first 262 bases of upstream flanking DNA and that the region between –1080 and –262 is required for maximal expression of this gene. Gel retardation assays showed that nuclear factors can be detected in soybean roots which specifically bind to sequences located between –1080 and –623, a region which is needed for maximal expression of the SbPRP1 promoter. Northern hybridization analysis was also used to show that little SbPRP1 mRNA was present in roots during the first 24 h after imbibition. These studies indicate that SbPRP1 expression is localized to the actively growing region of the root and that this expression is temporally regulated during very early stages of seedling growth. 相似文献
3.
A.V. Sergeeva J.V. Sopova T.A. Belashova V.A. Siniukova A.V. Chirinskaite A.P. Galkin 《朊病毒》2019,13(1):21-32
Amyloids are non-branching fibrils that are composed of stacked monomers stabilized by intermolecular β-sheets. Some amyloids are associated with incurable diseases, whereas others, functional amyloids, regulate different vital processes. The prevalence and significance of functional amyloids in wildlife are still poorly understood. In recent years, by applying new approach of large-scale proteome screening, a number of novel candidate amyloids were identified in the yeast Saccharomyces cerevisiae, many of which are localized in the yeast cell wall. In this work, we showed that one of these proteins, Toh1, possess amyloid properties. The Toh1-YFP hybrid protein forms detergent-resistant aggregates in the yeast cells while being expressed under its own PTOH1 or inducible PCUP1 promoter. Using bacterial system for generation of extracellular amyloid aggregates C-DAG, we demonstrated that the N-terminal Toh1 fragment, containing amyloidogenic regions predicted in silico, binds Congo Red dye, manifests ‘apple-green’ birefringence when examined between crossed polarizers, and forms amyloid-like fibrillar aggregates visualized by TEM. We have established that the Toh1(20–365)-YFP hybrid protein fluorescent aggregates are co-localized with a high frequency with Rnq1C-CFP and Sup35NM-CFP aggregates in the yeast cells containing [PIN+] and [PSI+] prions, and physical interaction of these aggregated proteins was confirmed by FRET. This is one of a few known cases of physical interaction of non-Q/N-rich amyloid-like protein and Q/N-rich amyloids, suggesting that interaction of different amyloid proteins may be determined not only by similarity of their primary structures but also by similarity of their secondary structures and of conformational folds. 相似文献
4.
Schrick K Fujioka S Takatsuto S Stierhof YD Stransky H Yoshida S Jürgens G 《The Plant journal : for cell and molecular biology》2004,38(2):227-243
A crucial role for sterols in plant growth and development is underscored by the identification of three Arabidopsis sterol biosynthesis mutants that exhibit embryonic defects: fackel (fk), hydra1 (hyd1), and sterol methyltransferase 1/cephalopod (smt1/cph). We have taken a dual approach of sterol profiling and ultrastructural analysis to investigate the primary defects underlying the mutant phenotypes. Comprehensive gas chromatography GC-MS analysis of hyd1 in comparison to fk reveals an abnormal accumulation of unique sterol intermediates in each case. Sterol profiling of the fk hyd1 double mutant provides genetic evidence that FK C-14 reductase acts upstream of HYD1 C-8,7 isomerase. Despite distinct differences in sterol profiles, fk and hyd1 as well as smt1/cph share ultrastructural features such as incomplete cell walls and aberrant cell wall thickenings in embryonic and post-embryonic tissues. The common defects are coupled with ectopic callose and lignin deposits. We show that all three mutants exhibit a deficiency in cellulose, but are not reduced in pectin and sugars of the cell wall and cytosol. The sterol biosynthesis inhibitors 15-azasterol and fenpropimorph also cause cell wall gaps in dividing root cells and a reduction in bulk cellulose, corroborating that the cell wall abnormalities are due to altered sterol composition. Our results demonstrate that sterols are crucial for cellulose synthesis in the building of the plant cell wall. 相似文献
5.
6.
Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development 总被引:3,自引:0,他引:3
Baumberger N Steiner M Ryser U Keller B Ringli C 《The Plant journal : for cell and molecular biology》2003,35(1):71-81
LRR-extensins (LRX) form a family of structural cell wall proteins containing a receptor-like domain. The functional analysis of Arabidopsis LRX1 has shown that it is involved in cell morphogenesis of root hairs. In this work, we have studied LRX2, a paralog of LRX1. LRX2 expression is mainly found in roots and is responsive to factors promoting or repressing root hair formation. The function of LRX1 and LRX2 was tested by the expression of a truncated LRX2 and different LRX1/LRX2 chimaeric proteins. Using complementation of the lrx1 phenotype as the parameter for protein function, our experiments indicate that LRX1 and LRX2 are functionally similar but show differences in their activity. Genetic analysis revealed that single lrx2 mutants do not show any defect in root hair morphogenesis, but synergistically interact with the lrx1 mutation. lrx1/lrx2 double mutants have a significantly enhanced lrx1 phenotype, resulting in frequent rupture of the root hairs soon after their initiation. Analysis of the root hair cell wall ultrastructure by transmission electron microscopy (TEM) revealed the formation of osmophilic aggregates within the wall, as well as local disintegration of the wall structure in the double mutant, but not in wild-type plants. Our results indicate that LRX1 and LRX2 have overlapping functions in root hair formation, and that they likely regulate cell morphogenesis by promoting proper development of the cell wall. 相似文献
7.
家蚕微孢子虫孢壁蛋白与其发芽的相关性 总被引:3,自引:0,他引:3
为了研究孢壁蛋白与家蚕微孢子虫发芽(孢原质弹出)的相关性,我们采用碳酸钾诱导微孢子虫体外发芽结合密度梯度离心的方法(简称GDGC法),收集纯化发芽后的孢子空壳(简称孢壳),对发芽液、纯化的孢壳及成熟孢子的孢壁蛋白组分进行了分析。结果表明:GDGC法可以获得高纯度孢壳,计算出其密度为1.130g/cm^3;与发芽前成熟孢子提取的孢壁蛋白相比,空孢壳可以提取到主要孢壁蛋白SWP32、SWP30、SWP25,同时发现SWP32、SWP25丰度有所降低;结合碳酸钾发芽液的蛋白电泳分析,发现孢壳上丰度降低的SWP32在发芽液蛋白样品中存在,LC—MS/MS数据分析也发现SWP32、SWP30、SWP25在碳酸钾处理液中都有存在;而用碳酸钾溶液处理冷冻孢子时,未观察到发芽现象,电泳结果显示此时K2CO,溶液中只有SWP30条带,说明在碳酸钾溶液诱导的发芽过程中SWP32和SWP25从孢壳上脱落可能与发芽相关而不是被碱性的碳酸钾溶解下来的[动物学报54(6):1068—1074,2008]。 相似文献
8.
Andrés I Gallardo O Parascandola P Javier Pastor FI Zueco J 《Biotechnology and bioengineering》2005,89(6):690-697
Xylanase A from Bacillus sp. BP7, an enzyme with potential applications in biotechnology, was used to test Pir4, a disulfide bound cell wall protein, as a fusion partner for the expression of recombinant proteins in standard or glycosylation-deficient mnn9 strains of Saccharomyces cerevisiae. Five different constructions were carried out, inserting in-frame the coding sequence of xynA gene in that of PIR4, with or without the loss of specific regions of PIR4. Targeting of the xylanase fusion protein to the cell wall was achieved in two of the five constructions, while secretion to the growth medium was the fate of the gene product of one of the constructions. In all three cases localization of the xylanase fusion proteins was confirmed both by Western blot and detection with Pir-specific antibodies and by xylanase activity determination. The cell wall-targeted fusion proteins could be extracted by reducing agents, showing that the inclusion of a recombinant protein of moderate size does not affect the way Pir4 is attached to the cell wall. Also, the construction that leads to the secretion of the fusion protein permitted us to identify a region of Pir4 responsible for cell wall retention. In summary, we have developed a Pir4-based system that allows selective targeting of an active recombinant enzyme to the cell wall or the growth medium. This system may be of general application for the expression of heterologous proteins in S. cerevisiae for surface display and secretion. 相似文献
9.
10.
11.
Azzolina BA Yuan X Anderson MS El-Sherbeini M 《Protein expression and purification》2001,21(3):393-400
We have cloned the Pseudomonas aeruginosa cell wall biosynthesis and cell division gene cluster that corresponds to the mra operon in the 2-min region of the Escherichia coli chromosome. The organization of the two chromosomal regions in P. aeruginosa and E. coli is remarkably similar with the following gene order: pbp3/pbpB, murE, murF, mraY, murD, ftsW, murG, murC, ddlB, ftsQ, ftsA, ftsZ, and envA/LpxC. All of the above P. aeruginosa genes are transcribed from the same strand of DNA with very small, if any, intragenic regions, indicating that these genes may constitute a single operon. All five amino acid ligases, MurC, MurD, MurE, MurF, and DdlB, in addition to MurG and MraY were cloned in expression vectors. The four recombinant P. aeruginosa Mur ligases, MurC, MurD, MurE, and MurF were overproduced in E. coli and purified as active enzymes. 相似文献
12.
Effect of anti-wall protein antibodies on auxin-induced elongation, cell wall loosening, and β-D-glucan degradation in maize coleoptile segments 总被引:1,自引:0,他引:1
Antiserum raised against the LiCl extract of maize shoot cell walls suppresses auxin-induced elongation of maize coleoptile segments. A series of polyclonal antibodies were raised against protein fractions separated from the LiCl extract of maize ( Zea mays L. cv. B73 x Mo17) coleoptiles by SP-Sephadex and Bio-Gel P-150 chromatography. To understand the role of cell wall proteins in growth regulation, the effect of these antibodies on auxin-induced elongation and changes in the cell walls of maize coleoptiles was examined. Four of the fractions prepared reacted with the antiserum raised against the total LiCl extract and effectively suppressed its growth-inhibiting activity. Only these fractions contained the proteins responsible for eliciting growthinhibiting antibodies. The antibodies capable of growth inhibition of auxin-induced elongation of segments also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time of the cell walls) of segments. The antibodies raised against one of the protein fractions separated by SP-Sephadex inhibited the autolytic reactions of isolated cell walls and the auxin-induced decrease in (1→3), (1→4)-β-D-glucans in the cell walls. Thus, the degradation of β-D-glucans by cell wall enzymes may be associated with the cell wall loosening that is responsible for cell elongation. Because the other antibodies did not influence the auxin-induced degradation of (1→3), (1→4)-β-D-glucanses, β-D-glucanases and other cell wall enzymes may cooperate in regulation of cell elongation in maize coleoptiles. 相似文献
13.
The Penicillium digitatum protein O‐mannosyltransferase Pmt2 is required for cell wall integrity,conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26 下载免费PDF全文
Eleonora Harries Mónica Gandía Lourdes Carmona Jose F. Marcos 《Molecular Plant Pathology》2015,16(7):748-761
The activity of protein O‐mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post‐harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall‐interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O‐glycosylation in the PAF26‐mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence. 相似文献
14.
Masato Nakamura Mamoru Nozaki Yuji Iwata Nozomu Koizumi Yasushi Sato 《Plant Biotechnology》2022,39(2):129
Endoplasmic reticulum (ER) stress activates unfolded protein responses (UPRs), such as promoting protein folding under the control of specific gene expression. Our previous study showed that ER stress induced by ER stress inducers such as tunicamycin (Tm), an inhibitor of N-linked glycan synthesis, causes ectopic lignin deposition in Arabidopsis roots, but the relationship between UPR and ectopic lignin deposition remains unclear. The receptor-like kinase THESEUS1 (THE1) has been shown to sense cell wall damage (CWD) induced in Arabidopsis by cellulose synthase inhibitors such as isoxaben (ISO) and to activate ectopic lignin deposition. In this study, we assessed the involvement of THE1 in ectopic lignin deposition caused by the ER stress inducer Tm. The loss-of-function mutation of THE1, the1-3, suppressed Tm-induced root growth inhibition and ectopic lignin deposition, revealing that THE1 is involved in root growth defects and ectopic lignin deposition caused by ER stress. Similarly, ISO treatment induced ectopic lignin deposition as well as the expression of the UPR marker genes binding protein 3 (BiP3) and ER-localized DnaJ 3b (ERdj3b). Conversely, in the the1-3 mutant, ISO-induced ectopic lignin deposition and the expression of BiP3 and ERdj3b were suppressed. These results showed that THE1 is involved in not only root growth inhibition and ectopic lignin deposition caused by ER stress but also CWD-induced UPR. 相似文献
15.
Kah-Siew Tan Takayuki Hoson Yoshio Masuda Seiichiro Kamisaka 《Physiologia plantarum》1991,83(3):397-403
Rice ( Oryza sativa L. cv. Sasanishiki) coleoptiles grown under water achieved greater length than those grown either in air or under water with constant air bubbling. The extensibility of cell walls in coleoptiles grown under water was larger than that in the other treatments. Per unit length of the coleoptile, the content of ferulic and diferulic acids ester-linked to hemicelluloses was higher in air and bubbling type coleoptiles than in water type ones. The extensibility of the coleoptile cell walls correlated with the content of diferulic acids per unit length and per hemicellulose, suggesting that the enhancement of the formation of diferulic acid bridges in hemicelluloses in air or under water with air bubbling makes the cell walls mechanically rigid; thereby inhibiting cell elongation in rice coleoptiles. In addition, the ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age, zone and growth conditions, suggesting that the feruloylation of hemicelluloses is rate-limiting in the formation of diferulic acid bridges in the cell walls of rice coleoptiles. 相似文献
16.
17.
Joel Oliver Mingzhu Fan Brian McKinley Starla Zemelis-Durfee Federica Brandizzi Curtis Wilkerson John E. Mullet 《The Plant journal : for cell and molecular biology》2021,105(4):1053-1071
Stems of bioenergy sorghum (Sorghum bicolor L. Moench.), a drought-tolerant C4 grass, contain up to 50 nodes and internodes of varying length that span 4–5 m and account for approximately 84% of harvested biomass. Stem internode growth impacts plant height and biomass accumulation and is regulated by brassinosteroid signaling, auxin transport, and gibberellin biosynthesis. In addition, an AGCVIII kinase (Dw2) regulates sorghum stem internode growth, but the underlying mechanism and signaling network are unknown. Here we provide evidence that mutation of Dw2 reduces cell proliferation in internode intercalary meristems, inhibits endocytosis, and alters the distribution of heteroxylan and mixed linkage glucan in cell walls. Phosphoproteomic analysis showed that Dw2 signaling influences the phosphorylation of proteins involved in lipid signaling (PLDδ), endomembrane trafficking, hormone, light, and receptor signaling, and photosynthesis. Together, our results show that Dw2 modulates endomembrane function and cell division during sorghum internode growth, providing insight into the regulation of monocot stem development. 相似文献
18.
Paul Mangeat Jacques Marvaldi Ounissa Ait Ahmed Guy Marchis-Mouren 《Regulatory peptides》1981,1(6):397-414
Vasoactive intestinal peptide (VIP), secretin, catecholamines and prostaglandin E1 (PGE1) in the presence of a cyclic nucleotide phosphodiesterase inhibitor stimulate the accumulation of cyclic AMP in two colorectal carcinoma cell lines (HT 29 and HRT 18) with subsequent activation of the cyclic AMP-dependent protein kinases. In HT 29 cells incubated without phosphodiesterase inhibitor, 10?9 M VIP promotes a rapid and specific activation of the low cyclic AMP phosphodiesterase (1.7-fold); at 25°C the effect is maintained for more than 15 min, while at 37°C the activity returns to basal value within 15 min. As shown by dose-response studies, VIP is by far the most effective inducer () of the cyclic AMP phosphodiesterase activity; partial activation of the enzyme is obtained by 3 · 10?7 M secretin, 10?5 M isoproterenol and 10?5 M PGE1; PGE2 and epinephrine are without effect. In HRT 18 cells VIP is less active () whereas 10?6 M PGE1, 10?6 M PGE2 and 10?5 M epinephrine are potent inducers of the phosphodiesterase activity. The positive cell response to dibutyryl-cyclic AMP further indicates that cyclic AMP is a mediator in the phosphodiesterase activation process. The incubation kinetics and dose response effects of the various agonists on the cyclic AMP-dependent protein kinase activity determined for both cell types in the same conditions show a striking similarity to those of phosphodiesterase. Thus coordinate regulation of both enzymes by cyclic AMP was observed in all incubation conditions. 相似文献
19.
CLD1/SRL1 modulates leaf rolling by affecting cell wall formation,epidermis integrity and water homeostasis in rice 下载免费PDF全文
Wen‐Qiang Li Min‐Juan Zhang Peng‐Fei Gan Lei Qiao Shuai‐Qi Yang Hai Miao Gang‐Feng Wang Mao‐Mao Zhang Wen‐Ting Liu Hai‐Feng Li Chun‐Hai Shi Kun‐Ming Chen 《The Plant journal : for cell and molecular biology》2017,92(5):904-923
Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI‐ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf‐rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map‐based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)‐anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform‐like epidermal cells. The defects in leaf epidermis decrease the water‐retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf‐rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. 相似文献
20.
Nafiseh Soltan Mohammadi Samaneh Mafakheri Narges Abdali Iván Bárcena-Uribarri Andreas Tauch Roland Benz 《生物化学与生物物理学报:生物膜》2013
The mycolic-acid layer of certain gram-positive bacteria, the mycolata, represents an additional permeability barrier for the permeation of small water-soluble solutes. Consequently, it was shown in recent years that the mycolic acid layer of individual bacteria of the group mycolata contains pores, called porins, for the passage of hydrophilic solutes. Corynebacterium amycolatum, a pathogenic Corynebacterium species, belongs to the Corynebacteriaceae family but it lacks corynomycolic acids in its cell wall. Despite the absence of corynomycolic acids the cell wall of C. amycolatum contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of C. amycolatum. Based on partial sequencing of the protein responsible for channel formation derived from C. amycolatum ATCC 49368 we were able to identify the gene coram0001_1986 within the known genome sequence of C. amycolatum SK46 that codes for the cell wall channel. The corresponding gene of C. amycolatum ATCC 49368 was cloned into the plasmid pXHis for its expression in Corynebacterium glutamicum ?porA?porH. Biophysical characterization of the purified protein (PorAcoram) suggested that coram0001_1986 is indeed the gene coding for the pore-forming protein PorAcoram in C. amycolatum ATCC 49368. The protein belongs to the DUF (Domains of Unknown Function) 3068 superfamily of proteins, mainly found in bacteria from the family Corynebacteriaceae. The nearest relative to PorAcoram within this family is an ORF which codes for PorAcres, which was also recognized in reconstitution experiments as a channel-forming protein in Corynebacterium resistens. 相似文献