首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ashraf  M.  Ashraf  M.Y.  Khaliq  Abdul  Rha  Eui Shik 《Photosynthetica》2004,42(1):157-160
Forty two-month-old plants of Dalbergia sissoo and D. latifolia were subjected for 56 d to water deficit induced by withholding water. Drought stress caused a significant reduction in plant height, stem diameter, net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) in both species, but the reduction was greater in D. sissoo than in D. latifolia. Water use efficiency (P N/E) was adversely affected due to water stress only in D. latifolia, and intrinsic water use efficiency (P N/g s) was increased in both species. There was a slight effect of water stress on variable to maximum fluorescence (Fv/Fm) (quantum yield of photosystem 2) in both species, but the species did not differ significantly in this attribute.  相似文献   

2.
A synthetic model of photosynthesis-transpiration was established based on a comprehensive consideration of models of CO2 and H2O fluxes controlled by stomata of plant leaves.The synthetic model was developed by introducing the internal conductance to CO2 assimilation, gic, and the general equation of stomatal conductance model to H2O diffusion, gsw = g0+a1Amf(Ds)/(Cs-Γ), into models of CO2 and H2O diffusion through the plant leaves stomata. In the above expression, g0 and a1 are coefficients, Cs ambient CO2 concentration at leaf surface, Γ CO2 compensation point, and f(Ds) the general function describing the response of stomatal conductance to humidity. Using the data observed in maize (Zea mays L.) and soybean (Glycine max Merr.) plants grown in the field, the parameters in the model were identified, and the applicability of the model was examined. The verification indicated that the developed model could be used to estimate net assimilation rate, transpiration rate, and water use efficiency with a high enough level of precision. The examination also showed that when f(Ds) = hs or f(Ds) = (1+Ds/D0)−1 was employed, the estimation precision of the synthetic model was highest. In the study, the parameter gic was estimated by means of a linear function of QP because it was shown to be mostly correlated with photosynthetic photon flux, QP, among various environmental factors.  相似文献   

3.
濒危植物羽叶丁香种群结构与动态特征   总被引:2,自引:0,他引:2  
姜在民  和子森  宿昊  赵涵  蔡靖 《生态学报》2018,38(7):2471-2480
羽叶丁香(Syringa pinnatifolia Hemsl.)是中国特有的珍稀濒危物种,首次对中卫香山和贺兰山甘沟保护区两地的天然种群进行调查,通过建立种群静态生命表,绘制种群存活曲线描绘其种群结构特征,利用种群数量动态预测和时间序列分析定量研究其未来的发展趋势。结果显示,中卫香山种群属于增长型,贺兰山甘沟种群属于衰退型,二者对外界干扰均比较敏感。两地羽叶丁香种群均不同程度地缺乏幼苗,种群发展主要靠中老龄个体维持,存活曲线都趋向于Deevey-Ⅱ型,死亡率曲线和危险率曲线均显示随着年龄的增长,各龄级呈波状上升趋势,且中卫香山种群波动更明显,生存分析也显示中卫香山种群更早进入衰退期,结合生境气候条件,贺兰山甘沟地区更适宜羽叶丁香的生存。动态指数和时间序列分析显示羽叶丁香种群具有前期缺乏,中期稳定,后期衰退的动态特征,幼龄个体的缺乏是导致其濒危的重要原因之一。因此,建议在目前封山育林保护基础上,加强羽叶丁香高效繁育技术研究,并适当进行人工抚育,以保证其种群的正常更新。  相似文献   

4.
We determined the interactive effects of irradiance, elevated CO2 concentration (EC), and temperature in carrot (Daucus carota var. sativus). Plants of the cv. Red Core Chantenay (RCC) were grown in a controlled environmental plant growth room and exposed to 3 levels of photosynthetically active radiation (PAR) (400, 800, 1 200 μmol m−2 s−1), 3 leaf chamber temperatures (15, 20, 30 °C), and 2 external CO2 concentrations (C a), AC and EC (350 and 750 μmol mol−1, respectively). Rates of net photosynthesis (P N) and transpiration (E) and stomatal conductance (g s ) were measured, along with water use efficiency (WUE) and ratio of internal and external CO2 concentrations (C i/C a). P N revealed an interactive effect between PAR and C a. As PAR increased so did P N under both C a regimes. The g s showed no interactive effects between the three parameters but had singular effects of temperature and PAR. E was strongly influenced by the combination of PAR and temperature. WUE was interactively affected by all three parameters. Maximum WUE occurred at 15 °C and 1 200 μmol m−2 s− 1 PAR under EC. The C i /C a was influenced independently by temperature and C a. Hence photosynthetic responses are interactively affected by changes in irradiance, external CO2 concentration, and temperature. EC significantly compensates the inhibitory effects of high temperature and irradiance on P N and WUE.  相似文献   

5.
在晴天条件下 ,研究了 4年生甘肃红豆草 (Onobrychis viciaefolia scop.cv.‘Gansu’)、沙打旺 (Astragalus adsurgens)、东方山羊豆 (Galega orientalis)和多年生香豌豆 (L athyruslatifolius)人工种群花期 (5月 31日 )和再生期 (7月 10日 )的净光合速率、蒸腾速率、气孔导度、水分利用效率以及土壤贮水量和水分利用特征。结果表明 ,自 5月 31日 (花期 )至 7月 10日 (再生期 ) ,4种牧草对土壤水分消耗由大到小依次为 :沙打旺 119.2 mm、多年生香豌豆 91.6 mm、山羊豆 81.9m m和红豆草 73.8m m。红豆草在花期和再生期的净光合速率分别为 12 .4 1和 9.0 6μ mol CO2 / (m2 · s) ,沙打旺为 10 .10和 7.0 1μ m ol CO2 / (m2 · s) ;红豆草在花期和再生期的日均蒸腾速率 8.13和 9.0 5 m m ol H2 O/ (m2· s) ,沙打旺刈割前和刈割后蒸腾速率分别为 7.4 0和 6 .5 4mmol H2 O/ (m2· s) ,属于高光合、高蒸腾型。而山羊豆和多年生香豌豆则属于低蒸腾、低光合类型 ,花期和再生期 ,山羊豆的日均光合速率分别为 4 .74和 4 .88μm ol CO2 / (m2· s) ,多年生香豌豆为 4 .4 1和 4 .6 4 μ mol CO2 / (m2· s) ,相应的蒸腾速率分别达到 3.75和 5 .4 2 m mol H2 O/ (m2 · s) ,4 .74和 4 .34m mol H2 O/ (m2 · s)。  相似文献   

6.
García-Núñez  C.  Rada  F.  Boero  C.  González  J.  Gallardo  M.  Azócar  A.  Liberman-Cruz  M.  Hilal  M.  Prado  F. 《Photosynthetica》2004,42(1):133-138
Stress-induced restrictions to carbon balance, growth, and reproduction are the causes of tree-line formation at a global scale. We studied gas exchange and water relations of Polylepis tarapacana in the field, considering the possible effects of water stress limitations imposed on net photosynthetic rate (P N). Daily courses of microclimatic variables, gas exchange, and leaf water potential were measured in both dry-cold and wet-warm seasons at an altitude of 4 300 m. Marked differences in environmental conditions between seasons resulted in differences for the dry-cold and wet-warm seasons in mean leaf water potentials (–1.67 and –1.02 MPa, respectively) and mean leaf conductances (33.5 and 58.9 mmol m–2 s–1, respectively), while differences in mean P N (2.5 and 2.8 mol m–2 s–1, respectively) were not as evident. This may be related to limitations imposed by water deficit and lower photon flux densities during dry and wet seasons, respectively. Hence P. tarapacana has coupled its gas exchange characteristics to the extreme daily and seasonal variations in temperature and water availability of high elevations.  相似文献   

7.
三种乡土树种在二种林分改造模式下的生理生态比较   总被引:14,自引:1,他引:14  
在丘陵荒山先锋树种马占相思林的林窗和均匀间伐50%(简称林冠层下)的2种林分改造模式下,研究了降真香、红椎和火力楠3种乡土树种生长初期的生理生态。结果表明,不管是在冬季或夏季,林窗中比林冠层下有更高的光合有效辐射(PAR)和相对湿度(RH),并且有较低的气温(Tair),林窗与林内最主要的差异是PAR的变化。生长在林窗里的植株比林冠层下的叶片小而厚,叶片单位面积干重增加,林窗里的植株叶片有较高的叶绿素含量。冬天,降真香和红椎在林窗里和林冠层下的净光合速率(Pn)日变化曲线都为单峰型,而火力楠在林窗下为双峰型,林冠层下为单峰型。3种树种在林窗里和林冠层下植株的蒸腾速率(Tr)有较相似的日进程,都为单峰型。2种林分改造模式下3种树种叶片气孔导度(GS)的日变化也较相似,与PAR的变化趋势相似,而与RH变化呈相反趋势。冬季。降真香和红椎在林窗的水分利用效率(WUE)比林冠层下稍高,而火力楠在林冠层下则比林窗高.但它们都无显著差异。夏天,3种树种在林窗和林冠层下的Pn与冬天有相似的结果。夏季红椎和降真香在林窗的Tr比林冠层下高,而火力楠在林冠层下的Tr比林窗高。Gs的变化趋势也与PAR相似,与RH变化趋势相反。夏季,降真香和火力楠的WUE在林窗比林冠层下高,但红椎却比林冠层下的低。3个树种中火力楠的WUE最高。3种树种在林窗和林冠层下的wUE都是冬季比夏季高。综合植物各项生理生态指标的分析结果可知,降真香和红椎较适宜种植在林窗里,而火力楠较能适应有一定郁闭度的林冠层下。  相似文献   

8.
The net photosynthetic rate (PN), stomatal conductance (gs) and transpiration (E) ofHardwickia binata Roxb. leaves were reduced due to decrease in the leaf water potential (ψw) from -2.0 to - 5.7 MPa. PN partially recovered in the treated plants upon rewatering. Decrease in gs due to water stress may be the main factor for reduction of PN. This work was supported by a financial grant from the MNES, India to KP.  相似文献   

9.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

10.
三峡库区濒危植物疏花水柏枝的生理生化特性研究   总被引:5,自引:0,他引:5  
陈芳清  谢宗强 《广西植物》2008,28(3):367-372
对三峡库区特有濒危植物疏花水柏枝的光合作用、蒸腾作用、水势等生理特性以及丙二醛(MDA)、过氧化物酶(POD)和多酚氧化酶(PPO)活性等进行分析测定。结果显示,疏花水柏枝在水淹胁迫后,能快速地恢复其光合与蒸腾生理作用。植株在秋季和夏初的光合作用和蒸腾作用的日动态呈单峰曲线,最高值出现在中午。夏初的光合强度与蒸腾强度一般高于秋季,表明夏初是该物种的生长旺季。该物种10月份水势的日动态在-0.97~1.82MPa之间变动,水势与光合作用与蒸腾作用呈显著负相关。该物种虽是一种对水淹和干旱胁迫适应能力较强的物种,但土壤水分状况仍对植物的生长有较大影响。植株的生长发育阶段对疏花水柏枝的抗逆性有影响,在花前的抗逆性总体高于花后。还对疏花水柏枝的迁地保护提出了相应的建议。  相似文献   

11.
Singh  B.  Singh  G. 《Photosynthetica》2003,41(3):407-414
Biomass, leaf water potential (l), net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), leaf to air temperature difference (T diff), and instantaneous water use efficiency (WUE) were measured in the seedlings of Dalbergia sissoo Roxb. grown under irrigation of 20 (W1), 14 (W2), 10 (W3), and 8 (W4) mm. Treatments were maintained by re-irrigation when water content of the soil reached 7.4% in W1, 5.6% in W2, 4.3% in W3, and 3.2% in W4. Seedlings in a control (W5) were left without irrigation after maintaining the soil field capacity (10.7%). Seedlings of W1 had highest biomass that was one tenth in W5. Biomass allocation was highest in leaf in W2 and in root in W4 and W5 treatments. Difference between predawn leaf water potential (Pd) and midday (mid) increased with soil water stress and with vapour pressure deficit (VPD) in April and May slowing down the recovery in plant leaf water status after transpiration loss. P N, E, and g s declined and T diff increased from W1 to W5. Their values were highly significant in April and May for the severely stressed seedlings of W4 and W5. P N increased from 08:00 to 10:00 and E increased until 13:00 within the day for most of the seedlings whereas g s decreased throughout the day from 08:00 to 17:00. P N and E were highest in March but their values were low in January, February, April, and May. Large variations in physiological variables to air temperature, photosynthetically active radiation, and vapour pressure deficit (VPD) indicated greater sensitivity of the species to environmental factors. WUE increased from W1 to W2 but decreased drastically at high water stress particularly during hot summer showing a kind of adaptation in D. sissoo to water stress. However, low biomass and reduced physiological functions at <50% of soil field capacity suggest that this species does not produce significant biomass at severe soil water stress or drought of a prolonged period.  相似文献   

12.
Variability in leaf gas-exchange traits in thirteen soybean (Glycine max L. Merr) genotypes was assessed in a field experiment conducted at high altitude (1 950 m). Leaf net photosynthetic rate (P N) exhibited a high degree of variability at all the growth stages studied. P N and other gas-exchange parameters exhibited a seasonal pattern that was similar for all the genotypes. P N rate was highest at seed filling stage. P N was positively and significantly associated with aboveground dry matter and seed yield. The area leaf mass (ALM) exhibited a strong positive association with leaf P N, aboveground dry matter, and seed yield. The positive association between ALM, P N, and seed yield suggests that this simple and easy to measure character can be used in breeding programmes as a surrogate for higher photosynthetic efficiency and eventually higher yield.  相似文献   

13.
Thirty-day-old seedlings of two jute species (Corchorus capsularis L. cv. JRC 212 and C. olitorius L. cv. JRO 632) were subjected to short-term salinity stress (160 and 200 mM NaCl for 1 and 2 d). Relative water content, leaf water potential, water uptake, transpiration rate, water retention, stomatal conductance, net photosynthetic rate and water use efficiency of both jute species decreased due to salinity stress. The decrease was greater in C. olitorius than in C. capsularis and with higher magnitude of stress. Greater accumulation of Na+ and Cl- and a lower ratio of K+/Na+ in the root and shoot of C. olitorius compared with C. capsularis were also recorded. Pretreatment of seedlings with kinetin (0.09 mM), glutamic acid (4 mM) and calcium nitrate (5 mM) for 24 h significantly improved net photosynthesis, transpiration and water use efficiency of salinity stressed plants, the effect being more marked in C. olitorius. Among the pre-treatment chemicals, calcium nitrate was most effective. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
土壤水分胁迫下沙漠葳的光合生理特征   总被引:1,自引:0,他引:1  
以从美国西部引进的沙生灌木——沙漠葳(Chilopsis linearis)的2年生实生苗为材料,通过盆栽试验于7-9份进行轻度、中度和重度土壤水分胁迫处理并分析其光合生理响应特征.结果显示:(1)60 d中度或重度土壤水分胁迫使沙漠葳的净光合速率(Pn)、水分利用效率(WUE)和光补偿点(LCP)显著降低,暗呼吸速率(DRR)减弱,而气孔导度(Cs)增大,气孔限制值(Ls)变小.(2)Pn日变化在7月份的轻度和中度土壤水分胁迫下表现为双峰曲线,其余月份的胁迫处理均为单峰曲线,同期内各胁迫处理Pn峰值出现的时间基本相同,而且8月份各水分胁迫的Pn值显著高于其它月份;WUE的日变化趋势和Pn日变化相似,而且土壤水分胁迫越严重,其水分利用效率越低;各水分胁迫处理的Pn和Tr光响应拟合曲线均基本呈抛物线形或倒抛物线形.(3)在轻度和中度土壤水分胁迫的初期,Pn降低主要受气孔限制因素的影响,随着胁迫期的延长和胁迫的加重,Pn降低由气孔限制为主逐步转向以非气孔限制为主.研究表明,沙漠葳对干旱胁迫具有一定的适应能力,但长期中度或重度干旱胁迫都会影响沙漠葳的正常生长发育,使其光合生产力大大降低.  相似文献   

15.
Previous leaf‐scale studies of carbon assimilation describe short‐term resource‐use efficiency (RUE) trade‐offs where high use efficiency of one resource requires low RUE of another. However, varying resource availabilities may cause long‐term RUE trade‐offs to differ from the short‐term patterns. This may have important implications for understanding canopy‐scale resource use and allocation. We used continuous gas exchange measurements collected at five levels within a Norway spruce, Picea abies (L.) karst., canopy over 3 years to assess seasonal differences in the interactions between shoot‐scale resource availability (light, water and nitrogen), net photosynthesis (An) and the use efficiencies of light (LUE), water (WUE) and nitrogen (NUE) for carbon assimilation. The continuous data set was used to develop and evaluate multiple regression models for predicting monthly shoot‐scale An. These models showed that shoot‐scale An was strongly dependent on light availability and was generally well described with simple one‐ or two‐parameter models. WUE peaked in spring, NUE in summer and LUE in autumn. However, the relative importance of LUE for carbon assimilation increased with canopy depth at all times. Our results suggest that accounting for seasonal and within‐canopy trade‐offs may be important for RUE‐based modelling of canopy carbon uptake.  相似文献   

16.
CO2增长对杉木中龄林针叶光合生理生态的影响   总被引:26,自引:4,他引:26  
通过对17a生杉木人工林小枝的活体测定,研究了大气CO2增长对杉木中龄林净光合、呼吸、气孔导度和水分利用效率等生理生态特性的影响。结果表明,在CO2浓度为45μmol/L左右时,杉木针叶净光合速率比正常大气CO2下提高1倍以卢,气孔导度和蒸速率有不同程度的降低,水分利用效率提高约1 ̄2倍;同时使光补偿点降低,饱和点和光抑制点提高,光量子效率提高40% ̄295%且阳酝 大于阴枝,针叶暗呼吸降低20%  相似文献   

17.
杨树无性系光合特征的研究   总被引:2,自引:1,他引:2  
对新培育的金科系列的4个杨树无性系(3#、6#、8#、9#)的光合特征及净光合速率、水分利用效率与主要影响因子的关系进行了研究。结果表明:不同月份4个无性系的净光合速率的日进程一般在10:00左右达到峰值,然后逐渐降低;蒸腾速率日进程不尽一致;气孔导度在7:00~9:00出现峰值后,缓慢下降。在6~8月,4个无性系的净光合速率的总平均值(μmol CO2·m-2·s-1)排序为:无性系9#(8.53)>6#>(7.21)3#(6.47)>8#(4.98);蒸腾速率的总平均值(mmol H2O·m-2·s-1)排序为:无性系9#(3.74)>3#(2.76)>6#(1.76)>8#(1.47);水分利用效率的总平均值(mmol CO2·mol-1 H2O)排序为:无性系8#(4.77)>6#(4.35)>3#(2.99)>9#(2.40)。4个无性系的净光合速率与水分利用效率的排序并不一致。9#属于高光合、高蒸腾、低水分利用效率类型,8#属低光合、低蒸腾、高水分利用效率类型。在6月份6#无性系的净光合速率和水分利用效率与温度、湿度显著相关,3#、8#、9#无性系与光合有效辐射和气孔导度密切相关。  相似文献   

18.
Leidi  E.O. 《Photosynthetica》2002,40(3):375-381
Gas exchange, water relations, and leaf traits were studied in the tuberous-root producing legumes ahipa (Pachyrhizus ahipa) and yambean (P. erosus) under different environmental conditions. Differences in leaf traits (hairiness, leaf area, areal leaf mass, stomatal density) and paraheliotropism were found between ahipa and yambean. Under sufficient water supply, the increase in air temperature and decrease in air humidity increased stomatal conductance (g s) and net photosynthetic rate (P N) in yambean but reduced them in ahipa. In a drying soil (14 d after irrigation), inter-specific variation in gas exchange was only observed in the early morning, and yambean showed a greater sensitivity to water restriction than ahipa. High g s at low humidity increased P N of P. erosus but resulted in lower water-use efficiency (WUE). However, long-term WUE, estimated by leaf carbon isotope discrimination, showed little variation between species. Daily-irrigated ahipa and yambean grown in the greenhouse did not show significant differences in gas exchange. However, leaf temperature was significantly greater in yambean than in ahipa while a steepper relationship between E and P N and g s was observed in ahipa.  相似文献   

19.
Zhang  Shouren  Li  Qingkang  Ma  Keping  Chen  Lingzhi 《Photosynthetica》2001,39(3):383-388
The effects of varying leaf temperature (T 1) on some ecophysiological characteristics of photosynthesis for Quercus liaotungensis Koiz. under ambient radiation stress around midday on clear summer days were investigated using an IRGA equipped with a temperature-controlled cuvette. Net photosynthetic rate (P N) decreased as T 1 increased from 30 to 35 °C as a result of stomatal closure, whereas non-stomatal limitation led to decreased P N in the T 1 range of 35–45 °C. Decreased transpiration rate (E) and stomatal conductance (g s) at leaf temperatures above 30 °C were interpreted as a combined feedward effect as a result of enhanced leaf-air vapour pressure deficit (VPD) and stomatal closure. Changes in E from T 1 30 to 20 °C depended on VPD when g s was maintained constant. Water use efficiency (WUE) varied inversely with T 1 by following a hyperbola. A decrease in intercellular CO2 concentration (C i) occurred as a result of stomatal closure and a relatively high carboxylation capacity, whereas inactivation of mesophyll carboxylation in combination with photorespiration might be associated with the observed increase in C i in the T 1 range of 40 to 45 °C.  相似文献   

20.
Velikova  V.  Tsonev  T.  Edreva  A.  Gürel  A.  Hakerlerler  H. 《Photosynthetica》2002,40(3):449-452
Strong inhibition of rates of CO2 assimilation and transpiration, stomatal conductance, and water use efficiency as well as photosystem 2 (PS2) photochemical activity were related to the severity of reddening. The inhibition of photosynthesis in red cotton leaves was due to both decreased photochemical activity and stomatal limitation. Lowered photosynthetic capacity could be one of the main factors of reduced yield in reddening cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号