共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for the static pressure-volume behavior of the lung parenchyma based on a pseudo-elastic strain energy function was tested. Values of the model parameters and their variances were estimated by an optimal least-squares fit of the model-predicted pressures to the corresponding data from excised, saline-filled dog lungs. Although the model fit data from twelve lungs very well, the coefficients of variation for parameter values differed greatly. To analyze the sensitivity of the model output to its parameters, we examined an approximate Hessian, H, of the least-squares objective function. Based on the determinant and condition number of H, we were able to set formal criteria for choosing the most reliable estimates of parameter values and their variances. This in turn allowed us to specify a normal range of parameter values for these dog lungs. Thus the model not only describes static pressure-volume data, but also uses the data to estimate parameters from a fundamental constitutive equation. The optimal parameter estimation and sensitivity analysis developed here can be widely applied to other physiologic systems. 相似文献
2.
Summary Parameter estimation of a Monod-type model based on the study of the theoretical identifiability of the model followed by the sensitivity analysis of the state variables with respect to parameters is presented. Theorerical identifiability allows to establish the unicity of the solution. On the other hand, sensitivity analysis throws light on the conditions that make parameters identifiable. Thus, the introduction of additional parameters, especially substrate maintenance and death constant, increases the estimation difficulty. 相似文献
3.
4.
5.
6.
Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen's ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell. 相似文献
7.
A mathematical model was developed for the characterization of quasistatic nonlinear viscoelastic behaviour of large arteries with activated smooth muscle. Arteries were considered to belong to the class of viscoelastic materials with fading memory and the first order term of the integral polynomial constitutive equations of Pipkin and Rogers satisfying the nonlinear superposition principle was modified to handle responses to increasing and decreasing loads independently. The two creep functions contained by the obtained one dimensional constitutive equation were determined experimentally from the series of creep and recovery tests of increasing amplitude performed on isolated canine iliac arteries following the activation of the vascular smooth muscle by normal dose of norepinephrine in vitro. Utilizing the constitutive equation of the arterial wall and the tabulated values of creep functions successive stress-strain hysteresis loops of various constant stress rates were simulated by digital computer. The computed hysteresis loops demonstrated the main characteristics, such as the weak and asymmetric rate-sensitivity of the experimentally observed hysteresis of arteries qualitatively well, thus allowing certain conclusions on the mechanism of quasistatic viscoelastic behaviour of vascular smooth muscle. 相似文献
8.
Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model 总被引:1,自引:0,他引:1
Atherosclerosis localizes at a bend andor bifurcation of an artery, and low density lipoproteins (LDL) accumulate in the intima. Hemodynamic factors are known to affect this localization and LDL accumulation, but the details of the process remain unknown. It is thought that the LDL concentration will be affected by the filtration flow, and that the velocity of this flow will be affected by deformation of the arterial wall. Thus, a coupled model of a blood flow and a deformable arterial wall with filtration flow would be invaluable for simulation of the flow field and concentration field in sequence. However, this type of highly coupled interaction analysis has not yet been attempted. Therefore, we performed a coupled analysis of an artery with multiple bends in sequence. First, based on the theory of porous media, we modeled a deformable arterial wall using a porohyperelastic model (PHEM) that was able to express both the filtration flow and the viscoelastic behavior of the living tissue, and simulated a blood flow field in the arterial lumen, a filtration flow field and a displacement field in the arterial wall using a fluid-structure interaction (FSI) program code by the finite element method (FEM). Next, based on the obtained results, we further simulated LDL transport using a mass transfer analysis code by the FEM. We analyzed the PHEM in comparison with a rigid model. For the blood flow, stagnation was observed downward of the bends. The direction of the filtration flow was only from the lumen to the wall for the rigid model, while filtration flows from both the wall to the lumen and the lumen to the wall were observed for the PHEM. The LDL concentration was high at the lumenwall interface for both the PHEM and rigid model, and reached its maximum value at the stagnation area. For the PHEM, the maximum LDL concentration in the wall in the radial direction was observed at the position of 3% wall thickness from the lumenwall interface, while for the rigid model, it was observed just at the lumenwall interface. In addition, the peak LDL accumulation area of the PHEM moved about according to the pulsatile flow. These results demonstrate that the blood flow, arterial wall deformation, and filtration flow all affect the LDL concentration, and that LDL accumulation is due to stagnation and the presence of filtration flow. Thus, FSI analysis is indispensable. 相似文献
9.
Artery bent buckling has been suggested as a possible mechanism that leads to artery tortuosity, which is associated with aging, hypertension, atherosclerosis, and other pathological conditions. It is necessary to understand the relationship between microscopic wall structural changes and macroscopic artery buckling behavior. To this end, the objectives of this study were to develop arterial buckling equations using a microstructure-based 4-fiber reinforced wall model, and to simulate the effects of vessel wall microstructural changes on artery buckling. Our results showed that the critical pressure increased nonlinearly with the axial stretch ratio, and the 4-fiber model predicted higher critical buckling pressures than what the Fung model predicted. The buckling equation using the 4-fiber model captured the experimentally observed reduction of critical pressure induced by elastin degradation and collagen fiber orientation changes in the arterial wall. These results improve our understanding of arterial stability and its relationship to microscopic wall remodeling, and the model provides a useful tool for further studies. 相似文献
10.
Dynamic compartmentalized metabolic models are identified by a large number of parameters, several of which are either non-physical or extremely difficult to measure. Typically, the available data and prior information is insufficient to fully identify the system. Since the models are used to predict the behavior of unobserved quantities, it is important to understand how sensitive the output of the system is to perturbations in the poorly identifiable parameters. Classically, it is the goal of sensitivity analysis to asses how much the output changes as a function of the parameters. In the case of dynamic models, the output is a function of time and therefore its sensitivity is a time dependent function. If the output is a differentiable function of the parameters, the sensitivity at one time instance can be computed from its partial derivatives with respect to the parameters. The time course of these partial derivatives describes how the sensitivity varies in time.When the model is not uniquely identifiable, or if the solution of the parameter identification problem is known only approximately, we may have not one, but a distribution of possible parameter values. This is always the case when the parameter identification problem is solved in a statistical framework. In that setting, the proper way to perform sensitivity analysis is to not rely on the values of the sensitivity functions corresponding to a single model, but to consider the distributed nature of the sensitivity functions, inherited from the distribution of the vector of the model parameters.In this paper we propose a methodology for analyzing the sensitivity of dynamic metabolic models which takes into account the variability of the sensitivity over time and across a sample. More specifically, we draw a representative sample from the posterior density of the vector of model parameters, viewed as a random variable. To interpret the output of this doubly varying sensitivity analysis, we propose visualization modalities particularly effective at displaying simultaneously variations over time and across a sample. We perform an analysis of the sensitivity of the concentrations of lactate and glycogen in cytosol, and of ATP, ADP, NAD+ and NADH in cytosol and mitochondria, to the parameters identifying a three compartment model for myocardial metabolism during ischemia. 相似文献
11.
Summary An interactive scheme for estimating parameters in an unstructured model of a recombinant fermentation process is presented. Sensitivity analysis is simultaneously evaluated in this approach so that the instantaneous influence of parameters on state variables can be inspected. The predicted profiles of fermentation by both the model and the sensitivity analysis based on ±50% variations of the initial concentration of glucose fit the experimental observations. 相似文献
12.
Dynamic modeling is a powerful tool for predicting changes in metabolic regulation. However, a large number of input parameters, including kinetic constants and initial metabolite concentrations, are required to construct a kinetic model. Therefore, it is important not only to optimize the kinetic parameters, but also to investigate the effects of their perturbations on the overall system. We investigated the efficiency of the use of a real-coded genetic algorithm (RCGA) for parameter optimization and sensitivity analysis in the case of a large kinetic model involving glycolysis and the pentose phosphate pathway in Escherichia coli K-12. Sensitivity analysis of the kinetic model using an RCGA demonstrated that the input parameter values had different effects on model outputs. The results showed highly influential parameters in the model and their allowable ranges for maintaining metabolite-level stability. Furthermore, it was revealed that changes in these influential parameters may complement one another. This study presents an efficient approach based on the use of an RCGA for optimizing and analyzing parameters in large kinetic models. 相似文献
13.
O J Deters C B Bargeron F F Mark M H Friedman 《Journal of biomechanical engineering》1986,108(4):355-358
Initial measurements of the time-varying wall shear rate at two sites in a compliant cast of a human aortic bifurcation are presented. The shear rates were derived from flow velocities measured by laser Doppler velocimetry (LDV) near the moving walls of the cast. To derive these shear rate values, the distance from the velocimeter sampling volume to the cast wall must be known. The time variation of this distance was obtained from LDV measurements of the velocity of the wall itself. 相似文献
14.
A recently published tree water flow and storage model (RCGro) for simulating water transport dynamics in trees and related stem diameter variations was improved in order to better describe a data set gathered under mild drought stress conditions. Model improvements were carried out based on the results of a mathematical identifiability analysis. This analysis provided important information with respect to the balance between model complexity and data availability. Using the identifiability analysis results, we were able to (1) highlight weaknesses of the model; (2) obtain information on how the model could be reduced in some places, to improve its identifiability properties, and extended in others, to enhance model performance; (3) identify which measurements are necessary to optimally calibrate the model. The resulting improved model was less complex (contained less unidentifiable parameters), had better dynamic properties and was able to better describe the stress data set. 相似文献
15.
Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model 总被引:2,自引:1,他引:2
Mechanistic models of nutrient uptake are essential to the study of plant-soil interactions. In these models, uptake rates depend on the supply of the nutrient through the soil and the uptake capacity of the roots. The behaviour of the models is complex, although only six to ten parameters are used. Our goal was to demonstrate a comprehensive and efficient method of exploring a steady-state uptake model with variation in parameters across a range of values described in the literature. We employed two analytical techniques: the first a statistical analysis of variance, and the second a graphical representation of the simulated response surface. The quantitative statistical technique allows objective comparison of parameter and interaction sensitivity. The graphical technique uses a judicious arrangement of figures to present the shape of the response surface in five dimensions. We found that the most important parameters controlling uptake per unit length of root are the average dissolved nutrient concentration and the maximal rate of nutrient uptake. Root radius is influential if rates are expressed per unit root length; on a surface area basis, this parameter is less important. The next most important parameter is the effective diffusion coefficient, especially in the uptake of phosphorus. The interactions of parameters were extremely important and included three and four dimensional effects. For example, limitation by maximal nutrient influx rate is approached more rapidly with increasing nutrient solution concentration when the effective diffusion coefficient is high. We also note the ecological implications of the response surface. For example, in nutrient-limited conditions, the rate of uptake is best augmented by extending root length; when nutrients are plentiful increasing uptake kinetics will have greater effect. 相似文献
16.
Becker W Rowson J Oakley JE Yoxall A Manson G Worden K 《Journal of biomechanics》2011,44(8):1499-1506
Understanding the mechanics of the aortic valve has been a focus of attention for many years in the biomechanics literature, with the aim of improving the longevity of prosthetic replacements. Finite element models have been extensively used to investigate stresses and deformations in the valve in considerable detail. However, the effect of uncertainties in loading, material properties and model dimensions has remained uninvestigated. This paper presents a formal statistical consideration of a selected set of uncertainties on a fluid-driven finite element model of the aortic valve and examines the magnitudes of the resulting output uncertainties. Furthermore, the importance of each parameter is investigated by means of a global sensitivity analysis. To reduce computational cost, a Bayesian emulator-based approach is adopted whereby a Gaussian process is fitted to a small set of training data and then used to infer detailed sensitivity analysis information. From the set of uncertain parameters considered, it was found that output standard deviations were as high as 44% of the mean. It was also found that the material properties of the sinus and aorta were considerably more important in determining leaflet stress than the material properties of the leaflets themselves. 相似文献
17.
Sun N Wood NB Hughes AD Thom SA Yun Xu X 《American journal of physiology. Heart and circulatory physiology》2007,292(6):H3148-H3157
The accumulation of low-density lipoprotein (LDL) is recognized as one of the main contributors in atherogenesis. Mathematical models have been constructed to simulate mass transport in large arteries and the consequent lipid accumulation in the arterial wall. The objective of this study was to investigate the influences of wall shear stress and transmural pressure on LDL accumulation in the arterial wall by a multilayered, coupled lumen-wall model. The model employs the Navier-Stokes equations and Darcy's Law for fluid dynamics, convection-diffusion-reaction equations for mass balance, and Kedem-Katchalsky equations for interfacial coupling. To determine physiologically realistic model parameters, an optimization approach that searches optimal parameters based on experimental data was developed. Two sets of model parameters corresponding to different transmural pressures were found by the optimization approach using experimental data in the literature. Furthermore, a shear-dependent hydraulic conductivity relation reported previously was adopted. The integrated multilayered model was applied to an axisymmetric stenosis simulating an idealized, mildly stenosed coronary artery. The results show that low wall shear stress leads to focal LDL accumulation by weakening the convective clearance effect of transmural flow, whereas high transmural pressure, associated with hypertension, leads to global elevation of LDL concentration in the arterial wall by facilitating the passage of LDL through wall layers. 相似文献
18.
Jacobsen JC Aalkjaer C Nilsson H Matchkov VV Freiberg J Holstein-Rathlou NH 《American journal of physiology. Heart and circulatory physiology》2007,293(1):H229-H237
Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying the initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simulated results point to a permissive role of cGMP in establishing intercellular synchronization. In sufficient concentration, cGMP may activate a cGMP-sensitive calcium-dependent chloride channel, causing a tight spatiotemporal coupling between release of sarcoplasmic reticulum calcium, membrane depolarization, and influx of extracellular calcium. Low [cGMP] is associated only with unsynchronized waves. At intermediate concentrations, cells display either waves or whole cell oscillations, but these remain unsynchronized between cells. Whole cell oscillations are associated with rhythmic variation in membrane potential and flow of current through gap junctions. The amplitude of these oscillations in potential grows with increasing [cGMP], and, past a certain threshold, they become strong enough to entrain all cells in the vascular wall, thereby initiating sustained vasomotion. In this state there is a rhythmic flow of calcium through voltage-sensitive calcium channels into the cytoplasm, making the frequency of established vasomotion sensitive to membrane potential. It is concluded that electrical coupling through gap junctions is likely to be responsible for the rapid synchronization across a large number of cells. Gap-junctional current between cells is due to the appearance of oscillations in the membrane potential that again depends on the entrainment of sarcoplasmic reticulum and plasma membrane within the individual cell. 相似文献
19.
Improved arterial wall model by coculturing vascular endothelial and smooth muscle cells 总被引:1,自引:0,他引:1
Niwa K Sakai J Watanabe T Ohyama T Karino T 《In vitro cellular & developmental biology. Animal》2007,43(1):17-20
We have constructed an in vitro arterial wall model by coculturing bovine arterial endothelial cells (ECs) and smooth muscle
cells (SMCs). When ECs were seeded directly over SMCs and cocultured in an ordinary culture medium, ECs grew sparsely and
did not form a confluent monolayer. Addition of ascorbic acid to the culture medium at concentrations greater than 50 μg/ml
increased the production of type IV collagen by the SMCs, and ECs formed a confluent monolayer covering the entire surface
of SMCs. Histological studies showed that the thickness of the cell layer composed of ECs and SMCs increased with increasing
duration of coculture. This arterial wall model, prepared by our method, may serve as a simple and good in vitro model to
study the effects of factors such as biological chemicals and shear stress on cell proliferation and other physiological functions
of arterial walls. 相似文献
20.
Keiichi Takamizawa 《Journal of Biorheology》2009,23(1):49-55
For a right coronary artery, three-dimensional stress and strain distributions at a physiological intraluminal pressure and an axial extension ratio were computed on the basis of a two-layer elastic model. To validate the model, curves of external radius versus pressure and of axial force versus pressure were computed for three axial extension ratios. To analyze mechanical properties, stress-free configurations of media and adventitia, and the constitutive law of each layer in literature, were used. The present study showed that the peak circumferential stress and the peak axial stress appear in the media at the boundary between the media and adventitia. This result is due to the opening angle of the media being larger than π (rad) and the larger value of a material constant of the strain energy function for the media than for the adventitia. The circumferential stress and strain were discontinuous at the boundary. On the other hand, the radial stress was continuous at the boundary because of the boundary condition for stress. The circumferential stress and axial stress in the adventitia were almost uniformly distributed, and smaller than in the media. The residual stress and strain were also computed. The circumferential residual stress and strain were almost linearly distributed in each layer, although discontinuity appeared at the boundary between the two layers. 相似文献