首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu Wang  Ying Sun 《Biometrics》2019,75(4):1179-1190
When performing spatial regression analysis in environmental data applications, spatial heterogeneity in the regression coefficients is often observed. Spatially varying coefficient models, including geographically weighted regression and spline models, are standard tools for quantifying such heterogeneity. In this paper, we propose a spatially varying coefficient model that represents the spatially varying parameters as a mixture of local polynomials at selected locations. The local polynomial parameters have attractive interpretations, indicating various types of spatial heterogeneity. Instead of estimating the spatially varying regression coefficients directly, we develop a penalized least squares regression procedure for the local polynomial parameter estimation, which both shrinks the parameter estimation and penalizes the differences among parameters that are associated with neighboring locations. We develop confidence intervals for the varying regression coefficients and prediction intervals for the response. We apply the proposed method to characterize the spatially varying association between particulate matter concentrations ( PM 2.5 ) and pollutant gases related to the secondary aerosol formulation in China. The identified regression coefficients show distinct spatial patterns for nitrogen dioxide, sulfur dioxide, and carbon monoxide during different seasons.  相似文献   

2.
The response of wall stress to the elasticity of each layer in the aorta wall was investigated to understand the role of the different elastic properties of layers in the aortic dissection. The complex mechanical interaction between blood flow and wall dynamics in a three-dimensional arch model of an aorta was studied by means of computational coupled fluid-structure interaction analysis. The results show that stresses in the media layer are highest in three layers and that shear stress is concentrated in the media layer near to the adventitia layer. Hence, the difference in the elastic properties of the layers could be responsible for the pathological state in which a tear splits across the tunica media to near to the tunica adventitia and the dissection spreads along the laminar planes of the media layer where it is near the adventitia layer.  相似文献   

3.
The physiological significance of inspiratory flow limitation (IFL) has recently been recognized, but methods of detecting IFL can be subjective. We sought to develop a mathematical model of the upper airway pressure-flow relationship that would objectively detect flow limitation. We present a theoretical discussion that predicts that a polynomial function [F(P) = AP(3) + BP(2) + CP + D, where F(P) is flow and P is supraglottic pressure] best characterizes the pressure-flow relationship and allows for the objective detection of IFL. In protocol 1, step 1, we performed curve-fitting of the pressure-flow relationship of 20 breaths to 5 mathematical functions and found that highest correlation coefficients (R(2)) for quadratic (0.88 +/- 0.10) and polynomial (0.91 +/- 0.05; P < 0.05 for both compared with the other functions) functions. In step 2, we performed error-fit calculations on 50 breaths by comparing the quadratic and polynomial functions and found that the error fit was lowest for the polynomial function (3.3 +/- 0.06 vs. 21.1 +/- 19.0%; P < 0.001). In protocol 2, we performed sensitivity/specificity analysis on two sets of breaths (50 and 544 breaths) by comparing the mathematical determination of IFL to manual determination. Mathematical determination of IFL had high sensitivity and specificity and a positive predictive value (>99% for each). We conclude that a polynomial function can be used to predict the relationship between pressure and flow in the upper airway and objectively determine the presence of IFL.  相似文献   

4.
The paper proposes a systematic method for fixed-point bifurcation analysis in circadian cells and similar biological models using interval polynomials theory. The stages for performing fixed-point bifurcation analysis in such biological systems comprise (i) the computation of fixed points as functions of the bifurcation parameter and (ii) the evaluation of the type of stability for each fixed point through the computation of the eigenvalues of the Jacobian matrix that is associated with the system’s nonlinear dynamics model. Stage (ii) requires the computation of the roots of the characteristic polynomial of the Jacobian matrix. This problem is nontrivial since the coefficients of the characteristic polynomial are functions of the bifurcation parameter and the latter varies within intervals. To obtain a clear view about the values of the roots of the characteristic polynomial and about the stability features they provide to the system, the use of interval polynomials theory and particularly of Kharitonov’s stability theorem is proposed. In this approach, the study of the stability of a characteristic polynomial with coefficients that vary in intervals is equivalent to the study of the stability of four polynomials with crisp coefficients computed from the boundaries of the aforementioned intervals. The efficiency of the proposed approach for the analysis of fixed-point bifurcations in nonlinear models of biological neurons is tested through numerical and simulation experiments.  相似文献   

5.
A model for the static pressure-volume behavior of the lung parenchyma based on a pseudo-elastic strain energy function was tested. Values of the model parameters and their variances were estimated by an optimal least-squares fit of the model-predicted pressures to the corresponding data from excised, saline-filled dog lungs. Although the model fit data from twelve lungs very well, the coefficients of variation for parameter values differed greatly. To analyze the sensitivity of the model output to its parameters, we examined an approximate Hessian, H, of the least-squares objective function. Based on the determinant and condition number of H, we were able to set formal criteria for choosing the most reliable estimates of parameter values and their variances. This in turn allowed us to specify a normal range of parameter values for these dog lungs. Thus the model not only describes static pressure-volume data, but also uses the data to estimate parameters from a fundamental constitutive equation. The optimal parameter estimation and sensitivity analysis developed here can be widely applied to other physiologic systems.  相似文献   

6.
Evaluating the sensitivity of biological models to various model parameters is a critical step towards advancing our understanding of biological systems. In this paper, we investigated sensitivity coefficients for a model simulating transport of tau protein along the axon. This is an important problem due to the relevance of tau transport and agglomeration to Alzheimer’s disease and other tauopathies, such as some forms of parkinsonism. The sensitivity coefficients that we obtained characterize how strongly three observables (the tau concentration, average tau velocity, and the percentage of tau bound to microtubules) depend on model parameters. The fact that the observables strongly depend on a parameter characterizing tau transition from the retrograde to the anterograde kinetic states suggests the importance of motor-driven transport of tau. The observables are sensitive to kinetic constants characterizing tau concentration in the free (cytosolic) state only at small distances from the soma. Cytosolic tau can only be transported by diffusion, suggesting that diffusion-driven transport of tau only plays a role in the proximal axon. Our analysis also shows the location in the axon in which an observable has the greatest sensitivity to a certain parameter. For most parameters, this location is in the proximal axon. This could be useful for designing an experiment aimed at determining the value of this parameter. We also analyzed sensitivity of the average tau velocity, the total tau concentration, and the percentage of microtubule-bound tau to cytosolic diffusivity of tau and diffusivity of bound tau along the MT lattice. The model predicts that at small distances from the soma the effect of these two diffusion processes is comparable.  相似文献   

7.
The epicardial coronary arteries experience significant torsion in the axial direction due to changes in the shape of the heart during the cardiac cycle. The objective of this study was to determine the torsional mechanical properties of the coronary arteries under various circumferential and longitudinal loadings. The coronary artery was treated as a two-layer composite vessel consisting of intima-medial and adventitial layers, and the shear modulus of each layer was determined. Eight porcine hearts were obtained at a local abattoir, and their right coronary and left anterior descending arteries were isolated and tested in vitro with a triaxial torsion machine (inflation, longitudinal stretch, and circumferential twist). After the intact vessel was tested, the adventitia was dissected away, leaving an intact media that was then tested under identical triaxial loading conditions. We proposed a biomechanical analysis to compute the shear modulus of the adventitia from the measured shear moduli of the intact vessel and the media. To validate our predictions, we used four additional hearts in which the shear modulus of the adventitia was measured after dissection of media. Our results show that the shear modulus does not depend on the shear stress or strain but varies linearly with circumferential and longitudinal stresses and in a nonlinear way with the corresponding strains. Furthermore, we found that the shear modulus of the adventitia is larger than that of the intact vessel, which is larger than the vessel media. These results may have important implications for baroreceptor sensitivity, circulation of the vasa vasorum, and coronary dissection.  相似文献   

8.
This paper highlights the consequences of incomplete observations in the analysis of longitudinal binary data, in particular non-monotone missing data patterns. Sensitivity analysis is advocated and a method is proposed based on a log-linear model. A sensitivity parameter that represents the relationship between the response mechanism and the missing data mechanism is introduced. It is shown that although this parameter is identifiable, its estimation is highly questionable. A far better approach is to consider a range of plausible values and to estimate the parameters of interest conditionally upon each value of the sensitivity parameter. This allows us to assess the sensitivity of study's conclusion to assumptions regarding the missing data mechanism. The method is applied to a randomized clinical trial comparing the efficacy of two treatment regimens in patients with persistent asthma.  相似文献   

9.
The signal-transfer process in the mitogen-activated protein kinase (MAPK) cascade is formulated as a reaction-diffusion system describing the complete three-step phospho-protein reactions and the diffusion process in the direction from the cell membrane to the nucleus. The simulation analysis of the model demonstrates that MAPK cascade can work as a signal amplifier so as to compensate the signal attenuation due to formation of phospho-protein gradients. It also is found to be attainable for eukaryotic cells that a steep gradient of phosphorylated MAPK is not formed in a certain range of the system parameter values. One of the distinctive features in the formation of phospho-protein gradients is revealed to be its high sensitivity to a change in parameter values such as diffusion distance, diffusion coefficients and enzymatic activities of the phosphatases, suggesting that these parameters may act as the key factors for regulation of the signal transduction systems.  相似文献   

10.
An experimental procedure is described which has been developed to measure the elastic properties of the outer (adventitial) and inner (medial) layers of excised bovine carotid arteries. The data analysis is based on a two-layered arterial wall model and the theory of large elastic deformations. The energy density functions for both layers are exponentials. The results show that the media and the adventitia are anisotropic; that the media is stiffer, more non-linear, and subjected to higher stresses than commonly assumed; and that both layers are stiffer in the axial direction than in the tangential direction.  相似文献   

11.
For a right coronary artery, three-dimensional stress and strain distributions at a physiological intraluminal pressure and an axial extension ratio were computed on the basis of a two-layer elastic model. To validate the model, curves of external radius versus pressure and of axial force versus pressure were computed for three axial extension ratios. To analyze mechanical properties, stress-free configurations of media and adventitia, and the constitutive law of each layer in literature, were used. The present study showed that the peak circumferential stress and the peak axial stress appear in the media at the boundary between the media and adventitia. This result is due to the opening angle of the media being larger than π (rad) and the larger value of a material constant of the strain energy function for the media than for the adventitia. The circumferential stress and strain were discontinuous at the boundary. On the other hand, the radial stress was continuous at the boundary because of the boundary condition for stress. The circumferential stress and axial stress in the adventitia were almost uniformly distributed, and smaller than in the media. The residual stress and strain were also computed. The circumferential residual stress and strain were almost linearly distributed in each layer, although discontinuity appeared at the boundary between the two layers.  相似文献   

12.
Summary The structure of the bulbus arteriosus of a wide range of teleost fish is described with particular reference to the vascularization and innervation. The adventitia of the organ consists of blood vessels and large nerve bundles in a collagen matrix. The nerve bundles contain monoamines, and fluorescence studies show small terminal bundles penetrating the muscular media; this is confirmed by electron microscopy. The media consists of an extensive elastic tissue matrix with a spiral arrangement of smooth muscle cells joined end to end by desmosomes and presumed electrotonic junctions. The muscle cells are innervated only at the adventitia/media boundary and the significance of this innervation is discussed. It is proposed that there is a correlation between the degree of vascularization and innervation and the activity of a particular species offish.  相似文献   

13.
Stochastic dynamical systems governed by the chemical master equation find use in the modeling of biological phenomena in cells, where they provide more accurate representations than their deterministic counterparts, particularly when the levels of molecular population are small. The analysis of parametric sensitivity in such systems requires appropriate methods to capture the sensitivity of the system dynamics with respect to variations of the parameters amid the noise from inherent internal stochastic effects. We use spectral polynomial chaos expansions to represent statistics of the system dynamics as polynomial functions of the model parameters. These expansions capture the nonlinear behavior of the system statistics as a result of finite-sized parametric perturbations. We obtain the normalized sensitivity coefficients by taking the derivative of this functional representation with respect to the parameters. We apply this method in two stochastic dynamical systems exhibiting bimodal behavior, including a biologically relevant viral infection model.  相似文献   

14.
At autopsy, 13 nonstenotic human left anterior descending coronary arteries [71.5 +/- 7.3 (mean +/- SD) yr old] were harvested, and related anamnesis was documented. Preconditioned prepared strips (n = 78) of segments from the midregion of the left anterior descending coronary artery from the individual layers in axial and circumferential directions were subjected to cyclic quasi-static uniaxial tension tests, and ultimate tensile stresses and stretches were documented. The ratio of outer diameter to total wall thickness was 0.189 +/- 0.014; ratios of adventitia, media, and intima thickness to total wall thickness were 0.4 +/- 0.03, 0.36 +/- 0.03, and 0.27 +/- 0.02, respectively; axial in situ stretch of 1.044 +/- 0.06 decreased with age. Stress-stretch responses for the individual tissues showed pronounced mechanical heterogeneity. The intima is the stiffest layer over the whole deformation domain, whereas the media in the longitudinal direction is the softest. All specimens exhibited small hysteresis and anisotropic and strong nonlinear behavior in both loading directions. The media and intima showed similar ultimate tensile stresses, which are on average three times smaller than ultimate tensile stresses in the adventitia (1,430 +/- 604 kPa circumferential and 1,300 +/- 692 kPa longitudinal). The ultimate tensile stretches are similar for all tissue layers. A recently proposed constitutive model was extended and used to represent the deformation behavior for each tissue type over the entire loading range. The study showed the need to model nonstenotic human coronary arteries with nonatherosclerotic intimal thickening as a composite structure composed of three solid mechanically relevant layers with different mechanical properties. The intima showed significant thickness, load-bearing capacity, and mechanical strength compared with the media and adventitia.  相似文献   

15.
A method is presented which renders parameter estimation possible in systems of non-linear differential equations where normally no solution exists in terms of analytic functions and which have to be solved numerically. The method uses the concept of sensitivity equations. Two examples are given, taking mathematical models for membrane action potentials in nerve and heart muscle by Hodgkin and Huxley and by Beeler and Reuter. The model equations together with the corresponding system of sensitivity equations are given, which are necessary to estimate maximum conductivity coefficients defining the interactions of different ionic current components. A computer program is described and results of action potential numerical analysis are presented using simulated data. It can be seen, that even with superimposed simulated noise the real parameter values are estimated in an excellent manner. The method can be used to interpret observed changes in action potential time courses under physiological and pharmacological conditions.  相似文献   

16.
In this work a simple kinetic model to describe the biosynthesis of lovastatin by Aspergillus terreus ATCC 20542 was proposed. Several series of experiments were conducted at different media compositions. The concentrations of C- and N-sources were changed over a wide range and so were the initial biomass concentrations. From these runs the relationships ruling the substrates uptake, biomass and product formation were learnt. Lovastatin biosynthesis appeared to be partly growth associated. The inhibitive effect of organic nitrogen on lovastatin biosynthesis was found and lactose appeared to be an important limiting substrate in the formation of lovastatin. The parameters of the model were evaluated on the basis of the kinetic data obtained in the separate experiments made in triplicate at two chosen media compositions. Other results obtained at different media compositions were independent of the ones mentioned above and used for the verification of the model. The validity of the model was also examined for the lactose-fed fed-batch run. Finally, a sensitivity analysis of the model parameters was performed. The formulated model, although relatively simplified, described the experimental data quite well and could be regarded as the background for further attempts to mathematically describe the process of lovastatin biosynthesis.  相似文献   

17.
A theoretical model is presented for stress-modulated growth in the aorta. The model consists of a pseudoelastic tube composed of two layers representing the intima/media and the adventitia. Finite volumetric growth is included by letting the time-rate of change of the zero-stress dimensions of each volume element depends linearly on the local stresses. After analyzing the model, we examine its fundamental growth response under changes in loads, material properties, and growth parameters. The behaviour of the model is quite sensitive to changes in material nonlinearity and in the coefficients of the growth law. Next, growth of the aorta is simulated during development and maturity. For an appropriate choice of the parameters, the model exhibits patterns of growth that agree qualitatively with known characteristics of aortic growth. Comparison of model results with published experimental data during hypertension in the rat shows good agreement in the time course of the vessel radii and residual strain. Finally, the implications of the results are discussed in the context of deducing a general mechanical growth law for soft tissues. The proposed model should be useful in studies to determine the biomechanical factor that regulates growth.  相似文献   

18.
Stress-modulated growth in the aorta is studied using a theoretical model. The model is a thick-walled tube composed of two pseudoelastic, orthotropic layers representing the intima/media and the adventitia. Both layers are assumed to follow a growth law in which the time rates of change of the growth stretch ratios depend linearly on the local smooth muscle fiber stress and on the shear stress due to blood flow on the endothelium. Using finite elasticity theory modified to include volumetric growth, we computed temporal changes in stress, geometry, and opening angle (residual strain) during development and following the onset of sudden hypertension. For appropriate values of the coefficients in the growth law, the model yields results in reasonable agreement with published data for global and local growth of the rat aorta.  相似文献   

19.
The detailed mechanical properties of various layers of the coronary artery are important for understanding the function of the vessel. The present article is focused on the determination of the incremental modulus in different layers and directions in the neighborhood of the in vivo state. The incremental modulus can be defined for any material subjected to a large deformation if small perturbations in strain lead to small perturbations of stresses in a linear fashion. This analysis was applied to the porcine coronary artery, which was treated as a two-layered structure consisting of an inner intima-media layer and an outer adventitia layer. We adopted a theory based on small-perturbation experiments at homeostatic conditions for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments were based on inflation and axial stretch. We demonstrate that under homeostatic conditions the incremental moduli are layer- and direction dependent. The incremental modulus is highest in the circumferential direction. Furthermore, in the circumferential direction, the media is stiffer than the whole wall, which is stiffer than the adventitia. In the axial direction, the adventitia is stiffer than the intact wall, which is stiffer than the media. Hence, the coronary artery must be treated as a composite, nonisotropic body. The data acquire physiological relevance in relation to coronary artery health and disease.  相似文献   

20.
Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined parameters. Assuming these models represent physiological reality, we explored how the results could change under increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号