首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

2.
Spatial and daily variation in photosynthetic water-use efficiency was examined in leaves of Betula pendula Roth with respect to distribution of hydraulic conductance within the crown, morphological properties of stomata, and water availability. Intrinsic water-use efficiency (A n/g s) was determined from gas-exchange measurements performed both in situ in a natural forest stand and on detached shoots under laboratory conditions. In intact foliage, sun leaves demonstrated significantly higher (P < 0.001) A n/g s than shade leaves, as photosynthesis in the lower canopy was chronically limited by low light availability. However, this difference reversed in the mid-day period under sufficient irradiance (I > 800 μmol m−2 s−1): A n/g s averaged 28.8 and 24.0 μmol mol−1 (P < 0.01) for shade and sun leaves, respectively. This last finding coincided with the data obtained in laboratory conditions: under equivalent leaf water supply and light, A n/g s in shade foliage was greater (P < 0.001) than in sun foliage across a wide range of irradiance. Thus, shade foliage of B. pendula is characterized by inherently higher A n/g s than sun foliage, associated with more conservative stomatal behavior, and lower soil-to-leaf (K T) and leaf hydraulic conductances. Under unlimited light conditions, a within-crown trade-off between A n/g s and K T becomes apparent. Differences in stomatal conductance between the detached shoots from sunlit and shaded canopy layers were largely attributable to the variation in stomatal morphology; significant relationships were established with characteristics combining stomatal size and density (relative stomatal surface, stomatal pore area index). Stomatal morphology is very likely involved in long-term adjustment of photosynthetic WUE.  相似文献   

3.
 DNA binding by trans-[(H2O)(Pyr)(NH3)4RuII]2+ (Pyr=py, 3-phpy, 4-phpy, 3-bnpy, 4-bnpy) is highly selective for G7 with K G=1.1×104 to 2.8×104, with the more hydrophobic Pyr ligands exhibiting slightly higher binding. A strong dependence on ionic strength indicates that ion-pairing with DNA occurs prior to binding. At μ=0.05, d[RuII-DNA]/dt=k[RuII][DNA], where k=0.17–0.21 M–1 s–1 with the various Pyr ligands. The air oxidation of [(py)(NH3)4RuII] n -DNA to [(py)(NH3)4RuIII] n -DNA at pH 6 occurs with a pseudo-first-order rate constant of k obs=5.6×10–4 s–1 at μ=0.1, T=25  °C. Strand cleavage of plasmid DNA appears to occur by both Fenton/Haber-Weiss chemistry and by base-catalyzed routes, some of which are independent of oxygen. Base-catalyzed cleavage is more efficient than O2 activation at neutral pH and involves the disproportionation of covalently bound RuIII and, in the presence of O2, Ru-facilitated autoxidation to 8-oxoguanine. Disproportionation of [py(NH3)4RuIII] n -DNA occurs according to the rate law: d[RuII–GDNA]/dt=k 0[RuIII–GDNA]+k 1[RuIII–GDNA][OH], where k 0=5.4×10–4 s–1 and k 1=8.8 M–1 s–1 at 25  °C, μ=0.1. The appearance of [(Gua)(py)(NH3)4RuIII] under argon, which occurs according to the rate law: d[RuIII–G]/dt=k 0[RuIII–GDNA]+k 1[OH][RuIII–GDNA] (k 0=5.74×10–5 s–1, k 1=1.93×10–2 M–1 s–1 at T=25  °C, μ=0.1), is consistent with lysis of the N-glycosidic bond by RuIV-induced general acid hydrolysis. In air, the ratio of [Ru-8-OG]/[Ru-G] and their net rates of appearance are 1.7 at pH 11, 25  °C. Small amounts of phosphate glycolate indicate a minor oxidative pathway involving C4′ of the sugar. In air, a dynamic steady-state system arises in which reduction of RuIV produces additional RuII. Received: 11 November 1998 / Accepted: 3 March 1999  相似文献   

4.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 μmol m−2 s−1, the shade leaves tended to have a significantly larger net photosynthetic rate (P N) than the sun leaves. At irradiances above 250 μmol m−2 s−1, the P N did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves.  相似文献   

5.
 Dithionite has been found to reduce directly (without mediators) the Escherichia coli R2 subunit of ribonucleotide reductase. With dithionite (∼10 mM) in large excess, the reaction at 25  °C is complete in ∼10 h. Preparations of E. coli R2 have an FeIII 2 (met-R2) component in this work at ∼40% levels, alongside the fully active enzyme FeIII 2 . . . Tyr*, which has a tyrosyl radical at Tyr-122. In the pH range studied (7–8) the kinetics are biphasic. Rate laws for both phases give [S2O4 2–] and not [S2O4 2–]1/2 dependencies, and saturation kinetics are observed for the first time in R2 studies. No dependence on pH was detected. The kinetics (25  °C) of the first phase are reproduced in separate experiments using only met-R2, with association of S2O4 2– to met-R2, K=330 M–1, occurring prior to electron transfer, k et=4.8×10–4 s–1, I=0.100 M (NaCl). The second phase assigned to the reaction of FeIII 2 . . . Tyr* with S2O4 2– gives K=800 M–1 and k et=5.6×10–5 s–1. Bearing in mind the substantially smaller reduction potential for FeIII 2 compared to Tyr*, this is a quite remarkable finding, with implications similar to those already reported for the reaction of R2 with hydrazine, but with additional information provided by the saturation kinetics. The similarity in rates for the two phases (∼fourfold difference) suggests that reduction of FeIII 2 is occurring in both cases, and since S2O4 2– is involved a two-equivalent change is proposed with the formation of FeII 2 . . . Tyr* in the case of active R2. As a sequel to the second phase, intramolecular reduction of the strongly oxidising Tyr* by the FeII 2 is rapid, and further decay of FeIIFeIII is also fast. There is no stable mouse met-R2 form, and the single-phase reaction with dithionite gives saturation kinetics with K=208 M–1 and k et=1.7±10–3 s–1. Mechanistic implications, including the applicability of a pathway for electron transfer via FeA, are considered. Received: 25 February 1998 / Received: 20 August 1998  相似文献   

6.
 Salmon sperm DNA platination has been conducted under strictly pseudo-first-order conditions with cisplatin (1) and rac-{(1S,2S,4S)-exo-2-(aminomethyl)-2-amino-7-bicyclo[2.2.1]heptane}dichloroplatinum(II) (2). An aquation step first occurs for both complexes, with the rate constants k 1 = 1.12(0.02)×10–4 s–1 and 1.47(0.02)×10–4 s–1 respectively for 1 and 2 at 37  °C, values in agreement with those previously reported. It is followed by the actual platination step whose second-order rate constant has been determined for the first time by physicochemical techniques. The values for 1 and 2 respectively are: k 2 = 2.08(0.07) M–1 s–1 and 3.9(0.4) M–1 s–1. These kinetic data are discussed in the context of a comparison of several biological properties of the two complexes. Received: 15 May 1998 / Accepted: 26 June 1998  相似文献   

7.
An attempt was made to induce rooting from single node cuttings of Camellia sinensis var. TV-20 under controlled conditions and study its biochemical changes during rooting. The nodal cuttings were pretreated with different concentrations of IAA, NAA and IBA and kept in a growth chamber (25 ±2 °C, 16 h photoperiod (55 μ mol m−2 s−1) with cool, white fluorescent lamps and 65% relative humidity) for 12 h. Among the three auxins used for pretreatment, IBA showed more positive response on rooting as compared to IAA and NAA within 2 weeks of transfer to potting medium. Among four concentrations of IBA tested, 75 ppm gave maximum percentage of rooting, number of roots and root length. Therefore, IBA was used further in experiments for biochemical investigation. The adventitious rooting was obtained in three distinct phases i.e. induction (0–12 days), initiation (12–14 days) and expression (14–18 days). IAA-oxidase activity of IBA-treated cuttings increased slightly as compared to control. The activity was found to decrease during induction and initiation phases and increase during expression phase. The peroxidase activity in IBA-treated cuttings increased up to initiation phase and declined at the expression phase. Polyphenoloxidase activity increased both in IBA-treated and control cuttings during induction and initiation phase but declined slowly during expression phase. Total phenolic content was higher in IBA-treated cuttings, particularly in initiation and expression phases and it also correlated with peroxidase activity. Phenolics might be playing key role for induction of adventitious rooting, and phenolic compounds can be used as rooting enhancer in tea plant.  相似文献   

8.
Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165–195 and 240–260 averaged 0.97 mmol m–2 (leaf area, projected) s–1 for the 12-m trees and 0.57 mmol m–2 (leaf area) s–1 for the 36-m trees. When photosynthetically active radiation (I P) exceeded the light saturation for photosynthesis in ponderosa pine (900 μmol m–2 (ground) s–1), differences in E were more pronounced: 2.4 mmol m–2 (leaf area) s–1 for the 12-m trees and 1.2 mmol m–2 s–1 for the 36-m trees, yielding g t of 140 mmol m–2 (leaf area) s–1 for the 12-m trees and 72 mmol m–2 s–1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season. Received: 19 April 1999 / Accepted: 23 March 2000  相似文献   

9.
The seasonal trends in water use efficiency of sun and shade leaves of mature oak (Quercus robur) and sycamore (Acer pseudoplatanus) trees were assessed in the upper canopy of an English woodland. Intrinsic water use efficiency (net CO2 assimilation rate/leaf conductance, A/g) was measured by gas exchange and inferred from C isotope discrimination (δ13C) methods. Shade leaves had consistently lower δ13C than sun leaves (by 1–2‰), the difference being larger in sycamore. Buds had distinct sun and shade isotopic signatures before bud break and received an influx of 13C-rich C before becoming net autotrophs. After leaf full expansion, δ13C declined by 1–2‰ gradually through the season, emphasising the importance of imported carbon in the interpretation of leaf δ13C values in perennial species. There was no significant difference between the two species in the value of intrinsic water use efficiency for either sun or shade leaves. For sun leaves, season-long A/g calculated from δ13C (72–78 μmol CO2 [mol H2O]−1) was 10–16% higher than that obtained from gas exchange and in situ estimates of leaf boundary layer conductance. For shade leaves, the gas exchange–derived values were low, only 10–18% of the δ13C-derived values. This is ascribed to difficulties in obtaining a comprehensive sample of gas exchange measurements in the rapidly changing light environment.  相似文献   

10.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

11.
One-year-old olive trees (cv. Koroneiki) were grown in plastic containers of 50 000 cm3 under full daylight and 30, 60, and 90 % shade for two years. The effects of shade on leaf morphology and anatomy, including stomatal density and chloroplast structure, net photosynthetic rate (P N), stomatal conductance (g s), and fruit yield were studied. Shade reduced leaf thickness due to the presence of only 1–2 palisade layers and reduced the length of palisade cells and spongy parenchyma. The number of thylakoids in grana as well as in stroma increased as shade increased, while the number of plastoglobuli decreased in proportion to the reduced photosynthetically active radiation (PAR). The higher the level of shade, the lower the stomatal and trichome density, leaf mass per area (ALM), g s, and P N. Shade of 30, 60, and 90 % reduced stomatal density by 7, 16, and 27 %, respectively, while the corresponding reduction in P N was 21, 35, and 67 %. In contrast, chlorophyll a+b per fresh mass, and leaf width, length, and particularly area increased under the same shade levels (by 16, 33, and 81 % in leaf area). P N reduction was due both to a decrease in PAR and to the morphological changes in leaves. The effect of shade was more severe on fruit yield per tree (32, 67, and 84 %) than on P N indicating an effect on bud differentiation and fruit set. The olive tree adapts well to shade compared with other fruit trees by a small reduction in stomatal and trichome density, palisade parenchyma, and a significant increase in leaf area.  相似文献   

12.
 Reactions (25  °C) of galactose oxidase, GOaseox from Fusarium NRRL 2903 with five different primary-alcohol-containing substrates RCH2OH:- D-galactose (I) and 2-deoxy-d-galactose (II) (monosaccharides); methyl-β-d-galactopyranoside (III) (glycoside);d-raffinose (IV) (trisaccharide); and dihydroxyacetone (V) have been studied in the presence of O2. The GOaseox state has a tyrosyl radical coordinated at a square-pyramidal CuII active site, and is a two-equivalent oxidant. Reactant concentrations were [GOaseox] (0.8–10 μM), RCH2OH (1.0–6.0 mM), and O2 (0.14–0.29 mM), with I=0.100 M (NaCl). The reactions, monitored at 450 nm by stopped-flow spectrophotometry, terminated with depletion of the O2. Each trace was fitted to the competing reactions GOaseox+RCH2 OH → GOaseredH2+RCHO (k 1), and GOaseredH2+O2→ GOaseox+H2O2 (k 2), with GOaseredH2 written as the doubly protonated two-electron-reduced CuI product. It was necessary to avoid auto-redox interconversion of GOaseox and GOasesemi . Information obtained at pH 7.5 indicates a 5 : 95 (ox : semi) "native" mix equilibration complete in ∼3 h. At pH >7.5, rate constants 10–4k 1 / M–1 s–1 for the reactions of GOaseox with (I) (1.19), (II) (1.07), (III) (1.29), (IV) (1.81), (V) (2.94) were determined. On decreasing the pH to 5.5, k 1 values decreased by factors of up to a half, and acid dissociation pK as in the range 6.6–6.9 were obtained. UV-Vis spectrophotometric studies on GOaseox gave an independently determined pK a of 6.7. No corresponding reactions of the Tyr495Phe variant were observed, and there are no similar UV-Vis absorbance changes for this variant. The pK a is therefore assigned to protonation of Tyr-495 which is a ligand to the Cu. The rate constant k 2 (1.01×107 M–1 s–1) is independent of pH in the range 5.5–9.0 investigated, suggesting that H+ (or H-atoms) for the O2 → H2O2 change are provided by the active site of GOasered . The CuI of GOasered is less extensively complexed, and a coordination number of three is likely. Received: 4 February 1997 / Accepted: 16 May 1997  相似文献   

13.
The presence of leaf in microcuttings of grape cvs. Arka Neelamani and Thompson Seedless promoted rooting in vitro (MS, 1 μM IAA, 0.1 μM GA3, 3% sucrose) but the effect varied depending on the number of leaves and position of the leaf on the cutting. Single node cuttings with a full-length lower internode and a lamina at top (LAT) showed earlier rooting and more root and shoot growth than cuttings with lamina positioned at the middle (LAM), while cuttings with a leaf at the base (LAB) of the cutting and full-length upper internode exhibited a lower percent rooting and sprouting, poor root and shoot growth, and low survival. Partial or complete removal of the upper internodal segment in LAB cuttings improved rooting and sprouting suggesting the possible operation of an inhibitory effect by the upper internode. Retaining an upper leaf in LAB cuttings (LAB+UL) resulted in necrosis of the upper leaf often followed by the lower one. The extent of necrotic damage was influenced by the leaf area and position or age of the cutting on the stock shoot. Retaining the lower internode in LAB and LAB+UL cuttings which held the node–leaf junction away from the medium, or reducing the concentration of MS medium helped significantly in improving the survival and performance of these cuttings. The difference in reaction between LAB and LAT cuttings was attributable mainly to the difference in the sensitivity of the stem part that came in contact with the medium. Removal of the leaf in LAB cuttings reduced this sensitivity. The majority of the LAB and LAB+UL cuttings, as well as non-rooting or delayed rooting LAT and LAM cuttings, exhibited high purple pigmentation of leaf, petiole and stem. Two-leafed cuttings in vitro showed poor survival, less rooting and low plantlet output compared to single-leafed cuttings. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
 Accessory function allows antigen-presenting cells to produce sufficient secondary signals for optimum T cell proliferation and interleukin-2 (IL-2) production. Alveolar macrophages are inferior accessory cells compared to monocytes (PBM). We report here that the accessory index (AI) of alveolar macrophages and PBM of patients with lung metastases of solid tumors treated with inhalations of human natural IL-2 (hnIL-2) increased following its administration (P<0.005). The accessory index was significantly elevated from baseline values after 2 weeks of inhalation of 300 000 IU hnIL-2/day (8.2±10.2 compared to 1.1±1; P<0.001). The inhalation of 150 000 IU also induced increases in the index (AI = 2.3±1.9), however, without reaching statistical significance. In addition at 300 000 IU IL-2/day a significant increase in the accessory index was observed for PBM (4±2.5; P<0.05). The indices of PBM and alveolar macrophages prior to inhalation showed a significant negative correlation with the age of the patients (r s =  – 0.5; r s =  – 0.8, respectively; P<0.03 for all comparisons). Our data demonstrate that the inhalational application of hnIL-2 enhances the accessory function of alveolar macrophages and, to lesser extent, the accessory index of PBM, indicating the occurrence of pharmacological immunostimulation. Received: 16 August 1995 / Accepted: 4 January 1996  相似文献   

15.
Summary The effect of different leaf areas on the rooting of Terminalia spinosa Engl. cuttings in an non-mist propagation system in glasshouses at Edinburgh was investigated by trimming the leaves to 0, 7.5, 15 and 30 cm2 before cuttings were severed from stockplants. Cuttings were taken to a standard length of 5 cm from the lateral shoots of previously pruned stockplants grown in a tropicalised glasshouse. During the rooting period, photosynthetic rate, stomatal conductance, water potential and relative water content of the cuttings were assessed at regular intervals. It was found that (i) removal of the entire leaf area prevented rooting; (ii) cuttings with a 7.5 cm2, 15 cm2 and 30 cm2 leaf all achieved 80% rooting after 3 weeks; (iii) an increase in leaf area from 7.5 cm2 to 30 cm2 increased the rate of rooting and the length of the longest root after 2 weeks, but also increased the number of original leaves abscised after 6 weeks; and (iv) the greatest number of new leaves were produced by cuttings with 7.5 cm2 and 15 cm2 leaf area per cutting. All leafy cuttings actively photosynthesized during the propagation period, with a mean rate of 2 mol CO2 m-2 s-1 with an irradiance of 100 mol m-2 s-1. Cuttings with 30 cm2 leaf area had lower relative water contents, lower stomatal conductances and lower photosynthetic rates per unit leaf area than those with a 7.5 cm2 and 15 cm2 leaf. It was concluded that T. spinosa cuttings are easy to root, provided the cuttings have leaves to produce current assimilates.A member of the Edinburgh Centre for Tropical Forests  相似文献   

16.
Rates of net photosynthesis (P N) and transpiration (E), and leaf temperature (TL) of maintenance leaves of tea under plucking were affected by photosynthetic photon flux densities (PPFD) of 200–2 200 μmol m−2 s−1. P N gradually increased with the increase of PPFD from 200 to 1 200 μmol m−2 s−1 and thereafter sharply declined. Maximum P N was 13.95 μmol m−2 s−1 at 1 200 μmol m−2 s−1 PPFD. There was no significant variation of P N among PPFD at 1 400–1 800 μmol m−2 s−1. Significant drop of P N occurred at 2 000 μmol m−2 s−1. PPFD at 2 200 μmol m−2 s−1 reduced photosynthesis to 6.92 μmol m−2 s−1. PPFD had a strong correlation with TL and E. Both TL and E linearly increased from 200 to 2 200 μmol m−2 s−1 PPFD. TL and E were highly correlated. The optimum TL for maximum P N was 26.0 °C after which P N declined significantly. E had a positive correlation with P N.  相似文献   

17.
On days with clear skies in late August 2002 diurnal changes in the within-branch heterogeneity of photosynthetic photon flux density at the leaf surface (PPFDs) and leaf temperature (T leaf) were measured at natural leaf orientations in the upper and lower layers of a Fagus crenata crown. The PPFDs and T leaf measurements were converted to branch photosynthesis rates (P B; μmol s−1) using a photosynthetic model proposed by Farquhar et al. (Planta 149:78–90, 1980), an empirical stomatal conductance model suggested by Leuning et al. (Plant Cell Environ 18:339–335, 1995), and the total leaf area of the branches. To evaluate the importance of the variation in PPFDs and T leaf on photosynthesis calculations, P B calculated with the observed variation in PPFDs and T leaf was compared with estimates, based on the average (variation-free) values of PPFDs and T leaf, respectively. In both the layers, daily total P B values obtained with T leaf averaging were very close to those obtained with no averaging because of the weak inflection of the net photosynthesis rate (P n) to T leaf curves in the observed T leaf ranges (24.4–36.5 and 21.9–29.1°C in the upper and lower layers, respectively) and relatively small variation in within-branch T leaf at each time of day. This finding applied across potential climate conditions on fine days in August (T leaf range of 19.4–41.5 and 16.9–34.1°C in the upper and lower layers, respectively) and when the spatial scale was increased from branch to leaf layer, which increased the maximum variation in within-branch T leaf from 7.8 to 9.5°C and 4.5 to 5.5°C in the upper and lower layers, respectively. In contrast, averaging PPFDs caused 25–50% and 41–90% overestimation of daily total P B in the upper and lower layers, respectively, due to the sharp curvature in the PPFDs response curve to P n, and relatively large variation in within-branch PPFDs. Further, it led to overestimation of midday depression of P B in the upper layer, possibly because branch structural acclimation to incident light was neglected. Our results indicate that averaged values of T leaf could be used for the estimation of carbon gain at layer scale throughout August, but spatial variations in PPFDs need to be considered in detail for reliable estimates of carbon gain.  相似文献   

18.
Whereas with advancing age, peak heart rate (HR) and cardiac index (CI) are clearly reduced, peak stroke index (SI) may decrease, remain constant or even increase. The aim of this study was to describe the patterns of HR, SI, CI, arteriovenous difference in oxygen concentration (C a-vO2), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), stroke work index (SWI) and mean systolic ejection rate index (MSERI) in two age groups (A: 20–30 years, n = 20; B: 50–60 years n = 20. After determination of pulmonary function, an incremental bicycle exercise test was performed, with standard gas-exchange measurements and SI assessment using electrical impedance cardiography. The following age-related changes were found: similar submaximal HR response to exercise in both groups and a higher peak HR in A than in B[185 (SD 9) vs 167 (SD 14) beats · min−1, P < 0.0005]; increase in SI with exercise up to 60–90 W and subsequent stabilization in both groups. As SI decreased towards the end of exercise in B, a higher peak SI was found in A [57.5 (SD 14.0) vs 43.6 (SD 7.7) ml · m−2, P < 0.0005]; similar submaximal CI response to exercise, higher peak CI in A [10.6 (SD 2.5) vs 7.2 (SD 1.3) l · min−1 · m−2, P < 0.0005]; no differences in C a-vO2 during exercise; higher MAP at all levels of exercise in B; higher SVRI at all levels of exercise in B; lower SWI in B after recovery; higher MSERI at all levels of exercise in A. The decrease in SI with advancing age would seem to be related to a decrease in myocardial contractility, which can no longer be compensated for by an increase in preload (as during submaximal exercise). Increases in systemic blood pressure may also compromise ventricular function but would seem to be of minor importance. Accepted: 24 September 1996  相似文献   

19.
 Kinetics of the steady-state oxidation of n–alkylferrocenes (alkyl = H, Me, Et, Bu and C5H11) by H2O2 to form the corresponding ferricenium cations catalyzed by horseradish peroxidase has been studied in micellar systems of Triton X-100, CTAB, and SDS, mostly at pH 6.0 and 25  °C. The rate of oxidation of ferrocenes with longer alkyl radicals is too slow to be measured. The reaction obeying the [RFc]:[H2O2] = 2 : 1 stoichiometry is strictly first-order in both HRP and RFc in a wide concentration range. The corresponding observed second-order rate constants k, which refer to the interaction of the peroxidase compound II (HRP-II) with RFc, decrease with the elongation of the alkyl substituent R, and this in turn is accompanied by an increase in the formal redox potentials E°′ in the same medium. Increasing the surfactant concentration lowers the rate constants k, the effect being due to the nonproductive binding of RFc to micelles rather than to enzyme inactivation. The micellar effects are accounted for in terms of the Berezin pseudo-phase model of micellar catalysis applied to the interaction of enzyme with organometallic substrates. The oxidation was found to occur primarily in the aqueous pseudo-phase and the calculated intrinsic second-order rate constants k w are (1.9 ± 0.5)×105, (2.7 ± 0.1)×104, and (5.9 ± 0.6)×103 M–1 s–1 for HFc, EtFc, and n–BuFc, respectively. The data obtained were used for estimating the self-exchange rate constants for the HRP-II/HRP couple in terms of the Marcus formalism. Received: 15 July 1996 / Accepted: 15 November 1996  相似文献   

20.
The effect of a 3-week exercise programme on performance and economy of walking was analysed in 16 male patients with chronic heart failure [mean age 51.8 (SD 6.9) years, height 174.9 (SD 6.3) cm, body mass 75.3 (SD 11.5) kg, ejection fraction 20.8 (SD 5.0)%]. They were submitted to a cardiopulmonary exercise test on a cycle ergometer and a 6-min walking test on a treadmill before and after the period of exercise training. The training programme consisted of interval cycle (five times a week for 15 min), and treadmill ergometer training (three times a week for 10 min) at approximately 70% cycling peak oxygen uptake (O2peak) and supplementary exercises (three times a week for 20 min). Compared to the pre values cycling O2peak [11.9 (SD 2.9) vs 14.0 (SD 2.3) ml ·  kg–1 · min–1], maximal self paced walking speed [0.68 (SD 0.33) vs 1.16 (SD 0.30) m · s–1], and net walking power [2.16 (SD 0.89) vs 2.73 (SD 0.91) W · kg–1] had increased (P < 0.01) while net energy cost [3.31 (SD 0.66) vs 2.33 (SD 0.38) J · kg–1 ·  m–1] had decreased (P < 0.001) after the training period. Approximately 42% of the increase of walking speed resulted from a higher walking power output, whereas approximately 58% corresponded to a positive effect on walking economy. The improvement in walking economy was a function of an increase in walking velocity itself and a result of a more efficient walking technique. These results would indicate that in patients with marked exercise intolerance, adequate exercise training programmes could contribute to favourable metabolic changes with positive effects on the economy of motion. Accepted: 29 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号