首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The rat neu oncogene product is a member of the epidermal growth factor (EGF) receptor subgroup of the superfamily of growth factor receptor tyrosine kinases. The oncogenic activation of the neu protein occurs by a point mutation within its transmembrane region which results in an increase in its tyrosine kinase activity. Using three different forms of neu expressed in insect cells via baculovirus infection, we have examined the biochemical differences between the normal and transforming forms of neu and investigated the role of the transmembrane domain in its tyrosine kinase activity. One form of neu which was expressed in insect cells consisted of the complete tyrosine kinase domain but lacked the extracellular and transmembrane regions (designated NTK). The other two forms consisted of the tyrosine kinase domain, the transmembrane domain, and 40 amino acids of the extracellular domain. One of these transmembrane forms of neu contained the normal valine residue at position 664 within the transmembrane region (MS-N), while the other contained the oncogenic glutamic acid residue at this position (MS-T). Direct comparisons of NTK, MS-N, and MS-T have shown that the NTK protein is capable of the highest extents of both autophosphorylation activity and the tyrosine phosphorylation of exogenous substrate, suggesting that the presence of the transmembrane region of neu suppresses the tyrosine kinase activity of this receptor. In addition, we have found that the oncogenic point mutation within the transmembrane region stimulates the tyrosine kinase activity of the neu protein by allowing it to more effectively utilize Mg2+. Overall, the results of these studies suggest that the valine to glutamic acid substitution at position 664 may at least partially relieve a negative constraint imparted by the membrane-spanning domain on the tyrosine kinase activity of neu and enables a more effective use of Mg2+ in the catalysis of tyrosine phosphorylation of exogenous substrates.  相似文献   

2.
The neu oncogene, characterized by Weinberg and colleagues, is a transforming gene found in ethylnitrosourea-induced rat neuro/glioblastomas; its human proto-oncogene homologue has been termed erbB2 or HER2 because of its close homology with the epidermal growth factor receptor (EGF-R) gene (c-erbB1). Expression of the rat neu oncogene is sufficient for transformation of mouse NIH 3T3 fibroblasts in culture and for the development of mammary carcinomas in transgenic mice, but the neu proto-oncogene has not been associated with cell transformation. We constructed a vector for expression of a chimeric cDNA and hybrid protein consisting of the EGF-R extracellular, transmembrane and protein kinase C-substrate domains linked to the intracellular tyrosine kinase and carboxyl terminal domain of the rat neu cDNA. Upon transfection with the construct, NIH 3T3 cells gave rise to EGF-R antigen-positive cell clones with varying amounts of specific EGF binding. Immunofluorescence and immunoprecipitation using neu- and EGF-receptor specific antibodies demonstrated a correctly oriented and positioned chimeric EGF-R-neu protein of the expected apparent mol. wt on the surface of these cells. EGF or TGF alpha induced tyrosine phosphorylation of the chimeric receptor protein, stimulated DNA synthesis of EGF-R-neu expressing cells and led to a transformed cell morphology and growth in soft agar. In contrast, the neu proto-oncogene did not show kinase activity or transforming properties when expressed at similar levels in NIH 3T3 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The Drosophila epidermal growth factor receptor homolog (DER) displays sequence similarity to both the epidermal growth factor (EGF) receptor and the neu vertebrate proteins. We have examined the possibility of deregulating the tyrosine kinase activity of DER by introducing structural changes which mimic the oncogenic alterations in the vertebrate counterparts. Substitution of valine by glutamic acid in the transmembrane domain, in a position analogous to the oncogenic mutation in the rat neu gene, elevated the in vivo kinase activity of DER in Drosophila Schneider cells sevenfold. A chimera containing the oncogenic neu extracellular and transmembrane domains and the DER kinase region, also showed a threefold elevated activity relative to a similar chimera with normal neu sequences. Double truncation of DER in the extracellular and cytoplasmic domains, mimicking the deletions in the v-erbB oncogene, did not however result in stimulation of in vivo kinase activity. The chimeric constructs were also expressed in monkey COS cells, and similar results were obtained. The ability to enhance the DER kinase activity by a specific structural modification of the transmembrane domain demonstrates the universality of this activation mechanism and strengthens the notion that this domain is intimately involved in signal transduction. These results also support the inclusion of DER within the tyrosine-kinase receptor family.  相似文献   

4.
Tyrosine 785 is a major determinant of Trk--substrate interaction.   总被引:12,自引:3,他引:9       下载免费PDF全文
Interaction of the nerve growth factor (NGF) receptor/Trk with cellular substrates was investigated by transient co-overexpression in human 293 fibroblasts using ET-R, a chimeric receptor consisting of the epidermal growth factor receptor (EGF-R) extracellular ligand binding domain and the Trk transmembrane and intracellular signal-generating sequences. The chimera was fully functional, and associated with and phosphorylated phospholipase C gamma (PLC gamma), ras GTPase-activating protein (GAP) and the non-catalytic subunit of phosphatidylinositol-3'-kinase, p85, in a ligand-dependent manner. Deletion of 15 C-terminal amino acids, including tyrosine 785 (Y-785) abrogated receptor and substrate phosphorylation activities. Mutation of Y-785 to phenylalanine somewhat impaired receptor phosphorylation activity, which was reflected in reduced GAP and p85 phosphorylation. In contrast, ET-YF phosphorylation of PLC gamma was significantly reduced, while the high affinity association potential with this substrate was abrogated by this point mutation in vitro and in intact cells. Furthermore, a tyrosine-phosphorylated synthetic C-terminal peptide competitively inhibited Trk cytoplasmic domain association with PLC gamma. Thus, the short C-terminal tail appears to be a crucial structural element of the Trk cytoplasmic domain, and phosphorylated Y-785 is a major and selective interaction site for PLC gamma.  相似文献   

5.
Mutating tyrosines 579 and 581 of the beta platelet-derived growth factor receptor (betaPDGFR) tyrosine kinase to phenylalanines (the F2 mutation) impair activation of the receptor in response to ligand, but mutation of the analogous tyrosines in the alphaPDGFR has no effect on ligand-dependent receptor activation. We have found that the F2 mutation has only a modest effect on ligand-dependent activation of a chimeric PDGFR composed of the extracellular and transmembrane domains of the alphaPDGFR and the cytoplasmic domain of the betaPDGFR by three measures: (1) the ability to phosphorylate endogenous and exogenous protein substrates in vitro, (2) phosphorylation of tyrosine 857, and (3) binding of the effector proteins PLCgamma, RasGAP, and SHP-2. Conversely, the F2 mutation substantially impairs ligand-dependent activation of chimeric PDGFRs that consist of either the extracellular domain alone or the extracellular and transmembrane domains of the betaPDGFR and all remaining sequence from the alphaPDGFR by two measures: (1) phosphorylation of endogenous protein substrates in vitro and (2) binding of PLCgamma and SHP-2. Our results indicate that the requirement of tyrosines 579 and 581 for maximal activation of the betaPDGFR in response to ligand is primarily determined by noncytoplasmic regions of the receptor.  相似文献   

6.
We have investigated the biological function of an unidentified human growth factor, the ligand of the putative HER2 receptor, by characterizing the signalling properties of its receptor. HER2 (or c-erbB-2), the human homolog of the rat neu proto-oncogene, encodes a transmembrane glycoprotein of the tyrosine kinase family that appears to play an important role in human breast carcinoma. Since a potential ligand for HER2 has not yet been identified, it has been difficult to analyze the biochemical properties and biological function of this cell surface protein. For this reason, we replaced the HER2 extracellular domain with the closely related ligand binding domain sequences of the epidermal growth factor (EGF) receptor, and examined the ligand-induced biological signalling potential of this chimeric HER1-2 protein. This HER1-2 receptor is targetted to the cell surface of transfected NIH 3T3 cells, forms high and low affinity binding sites, and generates normal mitogenic and cell transforming signals upon interaction with EGF or TGF alpha. The constitutive activation of wild-type HER2 in transfected NIH 3T3 cells suggests the possibility that these cells synthesize the as yet unidentified HER2 ligand and activate HER2 by an autocrine mechanism.  相似文献   

7.
Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.  相似文献   

8.
The neu receptor oncoprotein tyrosine kinase, capable of transforming cultured fibroblasts and causing mammary carcinomas in transgenic mice, carries a point mutation in its transmembrane domain and shows a constitutive tyrosine kinase activity. We analyzed the neu tyrosine kinase and its substrates in transfected NIH 3T3 fibroblasts by phosphotyrosine immunoblotting. Tyrosine phosphorylated proteins were similar but not identical in epidermal growth factor (EGF)-stimulated cells expressing the human EGF receptor (EGFR) or a chimeric EGFR/neu receptor but differed from phosphotyrosyl proteins constitutively expressed in neu oncogene-transformed cells. The neu oncoprotein in the latter cells was phosphorylated in tyrosine in a ligand-independent manner and had a shortened half-life in comparison with the normal neu protein. Tumor promoter pretreatment inhibited ligand-induced receptor tyrosine phosphorylation and decreased tyrosine phosphorylated neu oncoprotein. Prolonged pretreatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) also prevented the induction of immediate early growth factor-regulated genes in response to neu activation. Expression of the neu oncogene but not the protooncogene in NIH 3T3 cells was associated with enhanced levels of the jun and fos oncoproteins and loss of serum growth factor induction of immediate early mRNA responses. The constitutively activated neu oncoprotein tyrosine kinase thus deregulates cellular genomic responses to growth factors.  相似文献   

9.
The exchange of nerve growth factor receptor/Trk and epidermal growth factor receptor (EGFR) phospholipase C gamma (PLC gamma) binding sites resulted in the transfer of their distinct affinities for this Src homology 2 domain-containing protein. Relative to wild-type EGFR, the PLC gamma affinity increase of the EGFR switch mutant EGFR.X enhanced its inositol trisphosphate (IP3) and calcium signals and resulted in a more sustained mitogen-activated protein (MAP) kinase activation and accelerated receptor dephosphorylation. In parallel, EGFR.X exhibited a significantly decreased mitogenic and transforming potential in NIH 3T3 cells. Conversely, the transfer of the EGFR PLC gamma binding site into the Trk cytoplasmic domain context impaired the IP3/calcium signal and attenuated the MAP kinase activation and receptor dephosphorylation, but resulted in an enhancement of the ETR.X exchange mutant mitogenic and oncogenic capacity. Our findings establish the significance of PLC gamma affinity for signal definition, the role of this receptor tyrosine kinase substrate as a negative feedback regulator and the importance of this regulatory function for mitogenesis and its disturbance in oncogenic aberrations.  相似文献   

10.
The HER2/neu gene encodes a receptor tyrosine kinase that is highly homologous to the epidermal growth factor receptor. Overexpression of the receptor in mammary and ovarian carcinoma correlates with poor patient prognosis. To determine how the overexpression of a normal receptor leads to the generation of an oncogenic signal, we compared the patterns of tyrosine phosphorylation in tumor-derived human cell lines expressing high levels of p185HER2/neu. In intact SKBR3 cells, basal phosphorylation of p185HER2/neu was not detected. However, pretreatment of cells with the tyrosine phosphatase inhibitor, sodium orthovanadate, led to the detection of phosphotyrosine on phospholipase C-gamma (PLC-gamma), GTPase-activating protein but not on the RAF-1 kinase. Strikingly, PLC-gamma was detected in a complex which contained multiple tyrosine-phosphorylated polypeptides. This complex was detected only in cytoplasmic fractions and had a distinct composition in different p185HER2/neu-overexpressing cell lines. Although GTPase-activating protein has been found previously in association with proteins of 190 and 62 kDa in fibroblasts, in SKBR3 cells it was found associated with multiple additional tyrosine-phosphorylated polypeptides. These experiments show that SKBR3 cells possess high levels of protein tyrosine phosphatase that can act upon p185HER2/neu. Moreover, they reveal, for the first time, the presence of PLC-gamma and GTPase-activating protein in cytosolic complexes containing a variety of other tyrosine-phosphorylated polypeptides. These observations suggest novel possibilities for the specific definition of receptor-generated signals in tumor cells.  相似文献   

11.
The neu protooncogene encodes a receptor tyrosine kinase homologous to the receptor for the epidermal growth factor. The oncogenic potential of neu is released upon chemical carcinogenesis, which replaces a glutamic acid for a valine residue, within the single transmembrane domain. This results in constitutive receptor dimerization and activation of the intrinsic catalytic function. To study the implications of the oncogenic mutation and the consequent receptor dimerization on the interaction with the yet incompletely characterized ligand of p185neu, we constructed chimeric proteins between the ligand binding domain of the epidermal growth factor receptor and the transmembrane and cytoplasmic domains of the normal or the transforming Neu proteins. The chimeric receptors displayed cellular and biochemical differences characteristic of the normal and the transforming Neu proteins and therefore may reliably represent the ligand binding functions of the two receptor forms. Analyses of ligand binding revealed qualitative and quantitative differences that were a result of the single mutation; whereas the normal chimera (valine version) displayed two populations of binding sites with approximately 90% of the receptors in the low affinity state, the transforming receptor (glutamic acid version) showed a single population of binding sites with relatively high affinity. Kinetics measurements indicated that the difference in affinities was because of slower rates of both ligand association and ligand dissociation from the constitutively dimerized mutant receptor. It therefore appears that the oncogenic mutation, by permanently dimerizing the receptor, establishes a high affinity ligand binding state which is functionally equivalent to the ligand-occupied normal receptor. Our conclusion is further supported by the rates of endocytosis of the wild-type and the mutant receptor. Hence, these results provide the first experimental evidence from living cells which supports a model that attributes the heterogeneity of ligand binding sites to the state of oligomerization of receptor tyrosine kinases.  相似文献   

12.
13.
Several cytoplasmic tyrosine kinases contain a conserved, non-catalytic stretch of approximately 100 amino acids called the src homology 2 (SH2) domain, and a region of approximately 50 amino acids called the SH3 domain. SH2/SH3 domains are also found in several other proteins, including phospholipase C-gamma (PLC gamma). Recent studies indicate that SH2 domains promote association between autophosphorylated growth factor receptors such as the epidermal growth factor (EGF) receptor and signal transducing molecules such as PLC gamma. Because SH2 domains bind specifically to protein sequences containing phosphotyrosine, we examined their capacity to prevent tyrosine dephosphorylation of the EGF and other receptors with tyrosine kinase activity. For this purpose, various SH2/SH3 constructs of PLC gamma were expressed in Escherichia coli as glutathione-S-transferase fusion proteins. Our results show that purified SH2 domains of PLC gamma are able to prevent tyrosine dephosphorylation of the EGF receptor and other receptors with tyrosine activity. The inhibition of tyrosine dephosphorylation paralleled the capacity of various SH2-containing constructs to bind to the EGF receptor, suggesting that the tyrosine phosphatase and the SH2 domain compete for the same tyrosine phosphorylation sites in the carboxy-terminal tail of the EGF receptor. Analysis of the phosphorylation sites protected from dephosphorylation by PLC gamma-SH2 revealed substantial inhibition of dephosphorylation of Tyr992 at 1 microM SH2. This indicates that Tyr992 and its flanking sequence is the high-affinity binding site for SH2 domains of PLC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The chimeric EK-receptor (EK-R), consisting of the epidermal growth factor receptor (EGF-R) extracellular binding domain and p145c-kit cytoplasmic signal-generating sequences, was fully functional in forming high and low affinity EGF binding sites and in ligand-regulated receptor and substrate phosphorylation activities. Relative to EGF-R, EK-R activation stimulated kit-characteristic phosphorylation of human 293 fibroblast substrate polypeptides. Transient coexpression of EK-R with candidate substrates resulted in ligand-induced phosphorylation of phospholipase C gamma and guanosine triphosphatase-activating polypeptide. The RAF-1 serine/threonine kinase was shown to be associated with activated EK-R, but no tyrosine phosphorylation could be detected. The faithfulness of EK-R substrate phosphorylation specificity was confirmed with stem cell factor-stimulated p145c-kit.  相似文献   

15.
Fibroblast growth factor (FGF) receptors (FGFRs) are structurally related receptor protein tyrosine kinases encoded by four distinct genes. Activation of FGFR-1, -2, and -3 by FGFs induces mitogenic responses in various cell types, but the mitogenic potential of FGFR-4 has not been previously explored. We have compared the properties of BaF3 murine lymphoid cells and L6 rat myoblast cells engineered to express FGFR-1 or FGFR-4. Acidic FGF binds with high affinity to and elicits tyrosine phosphorylation of FGFR-1 or FGFR-4 receptors displayed on BaF3 cells, but only FGFR-1 activation leads to cell survival and growth. FGFR-4 activation also fails to elicit detectable signals characteristic of the FGFR-1 response: tyrosine phosphorylation of SHC and extracellular signal-related kinase (ERK) proteins and induction of fos and tis11 RNA expression. The only detected response to FGFR-4 activation was weak phosphorylation of phospholipase C gamma. A chimeric receptor containing the extracellular domain of FGFR-4 and the intracellular domain of FGFR-1 confers FGF-dependent growth upon transfected BaF3 cells, demonstrating that the intracellular domains of the receptors dictate their functional capacity. Activation of FGFR-1 in transfected L6 myoblasts induced far stronger phosphorylation of phospholipase C gamma, SHC, and ERK proteins than could activation of FGFR-4 in L6 cells, and only FGFR-1 activation induced tyrosine phosphorylation of a characteristic 80-kD protein. Hence, the signaling and biological responses elicited by different FGF receptors substantially differ.  相似文献   

16.
Activation of T cells through the TCR/CD3 receptor complex with either specific Ag or antibody results in tyrosine phosphorylation of intracellular protein substrates and phosphatidylinositol-phospholipase C (PLC) signaling, leading to the generation of PI breakdown products and the mobilization of intracellular calcium. Stimulation of the T cell surface receptor CD2 similarly propagates early signals through phosphatidylinositol-PLC activation. Previous reports have shown that CD3 activation leads to tyrosine phosphorylation of the PLC isozyme PLC gamma 1. In this report, we investigated the potential similarity between CD3-induced signaling through PLC gamma 1 and that induced by CD2. We show that stimulation of CD2 receptors on T cells caused tyrosine phosphorylation of PLC gamma 1. Cross-linking of CD2 with CD3 receptors augmented the phosphorylation of PLC gamma 1 on tyrosine, whereas ligation of the CD45 tyrosine phosphatase with CD2 receptors prevented PLC gamma 1 tyrosine phosphorylation. T cells stimulated by ligation of CD2 with its counter-receptor in the form of a soluble LFA-3/Ig fusion protein cross-linked on the cell surface, resulted in a low, but detectable level of PLC gamma 1 phosphorylation with prolonged kinetics, whereas that induced by cross-linking with anti-CD2 was stronger but transient. Co-ligation of LFA-3/Ig with suboptimal concentrations of anti-CD3 resulted in profound augmentation of PLC gamma 1 tyrosine phosphorylation, mobilization of intracellular calcium and T cell proliferation. To explore the relationship between CD3- and CD2-stimulated signaling, T cells were desensitized through 1 h incubation with anti-CD3. CD3 receptor modulation potently down-regulated CD2-induced PLC gamma 1 tyrosine phosphorylation and calcium mobilization. In contrast, PMA or ionomycin treatment did not alter CD2-stimulated tyrosine phosphorylation of PLC gamma 1, suggesting that tyrosine kinase inhibition by CD3 receptor modulation was not caused by signaling events downstream of PLC gamma 1. Taken together, these results support the hypothesis that CD2 provides a potent co-stimulatory signal for CD3-induced T cell activation that is associated with tyrosine kinase(s) and PLC gamma 1.  相似文献   

17.
The tyrosine phosphorylation sites in the human alpha PDGF receptor (alpha PDGFR) required for association with PI-3 kinase have been identified as tyrosines 731 and 742. Mutation of either tyrosine substantially reduced PDGF-induced PI-3 kinase activity but did not impair the receptor-mediated mitogenic response. We sought to determine whether PDGF-induced PI-3 kinase activity could be further ablated so as to exclude a low threshold requirement for PDGFR signal transduction. Thus, we mutated both tyrosine 731 and 742 and expressed the double mutant (Y731F/Y742F) in 32D hematopoietic cells. In such transfectants, PDGF induced no detectable receptor-associated or anti-P- Tyr recoverable PI-3 kinase activity. Under the same conditions, neither mobility shift of raf-1 nor tyrosine phosphorylation of either PLC gamma or MAP kinase was impaired. 32D transfectants expressing the double mutant showed wild-type alpha PDGFR levels of mitogenic and chemotactic responses to PDGF. To examine the effect of the double mutation in cells that normally respond to PDGF, we generated chimeras in which the cytoplasmic domains of wild-type alpha PDGFR, Y731F, and Y731F/Y742F were linked to the extracellular domain of colony- stimulating factor-1 (CSF-1) receptor (fms). After introduction of the chimeric receptors into mouse NIH/3T3 fibroblasts, the ability of CSF-1 to stimulate growth of these transfectants was examined. Our data show that all these chimeric receptors exhibited similar abilities to mediate CSF-1-stimulated cell growth. These findings lead us to conclude that PDGF-induced PI-3 kinase activity is not required for PDGF-stimulated mitogenic pathway in both NIH/3T3 fibroblasts and 32D hematopoietic cells.  相似文献   

18.
Epidermal growth factor (EGF) or platelet-derived growth factor binding to their receptor on fibroblasts induces tyrosine phosphorylation of PLC gamma 1 and stable association of PLC gamma 1 with the receptor protein tyrosine kinase. Similarly in lymphocytes, cross-linking of antigen receptors induces the formation of molecular complexes incorporating PLC gamma 1; however, associated kinase activity is thought to be mediated through cytoplasmic protein tyrosine kinase(s). In this report, we generated a fusion protein containing the SH2 domains of human PLC gamma 1 and human IgG1 heavy chain constant region to identify lymphocyte phosphoprotein-binding PLC gamma 1 SH2 domains following cellular activation. As in EGF- or platelet-derived growth factor-stimulated fibroblasts, PLC gamma 1 is coprecipitated in activated lymphocytes, complexed with associated tyrosine-phosphorylated proteins. One of these, a 35/36-kDa protein found prominently in T cells and at lower levels in B cells, bound to the fusion protein in immunoprecipitation experiments. The fusion protein showed lineage restricted association with a 74-kDa phosphoprotein in T cells and a 93-kDa phosphoprotein in B cells. It bound to activated EGF receptor in fibroblasts as expected, and protein tyrosine kinase activity was precipitated from EGF-stimulated cells. However, PLC gamma 1-associated protein tyrosine kinase activity was not detected in activated lymphocytes. These data suggest that lymphocyte PLC gamma 1 SH2-binding proteins are cell lineage specific and may be transiently associated with activated PLC gamma 1.  相似文献   

19.
We have used the neurokinin NK-2 receptor as a model to examine how receptor desensitization affects cellular responses. The liganded receptor transiently activates phospholipase C (PLC) and is rapidly phosphorylated on Ser/Thr residues in its C-terminal domain. Mutant receptors lacking this domain mediate persistent activation of PLC. We now show that, in transfected Rat-1 cells, mutant receptor mediates ligand-induced DNA synthesis, morphological transformation and growth in soft agar, whereas wild-type (wt) receptor does not. Wt receptor causes only transient MAP kinase activation. In contrast, MAP kinase activation by mutant receptor is sustained for >4 h. Neither wt nor mutant receptor couples to Ras activation. Downregulation of protein kinase C (PKC) has little effect on MAP kinase activation, DNA synthesis and transformation. Mutant receptors also promote stronger protein tyrosine phosphorylation and stress fibre formation than does wt receptor. Thus, C-terminal truncation allows the NK-2 receptor to signal sustained MAP kinase activation, cell growth and transformation by a Ras- and PKC-independent mechanism. Our results reveal the importance of the C-terminal ''desensitization domain'' in suppressing the oncogenic potential of a prototypic PLC-coupled receptor.  相似文献   

20.
The specific point mutation Val-->Glu664 within the transmembrane domain of the neu/erbB-2 receptor is associated with increased receptor dimerization and increased receptor tyrosine kinase activity resulting in malignant transformation of cells. It is well established that Glu and residues in proximity are necessary for receptor dimerization but many studies suggest that other intramembrane constraints, not yet elucidated, are determinant for transformation. In this work, we investigated dimer models both to understand the structural role of the Glu mutation in the transmembrane domain association and to determine helix-helix contacts required for oncogenic transformation. Different types of helix-helix association based on data resulting from Cys mutational studies of the full wild receptor and spectroscopic data of transmembrane neu peptides have been explored by molecular dynamics simulations. The study leads to propose a model for the dimeric association of the transmembrane domains of the oncogenic neu receptor showing left-handed interactions of the two helices stabilized by symmetrical hydrogen bonding interactions involving the Glu side chain on one helix and the facing carbonyl of Ala661 on the second helix. Contacting residues observed in the symmetric interface explain the transforming activity or the non transforming activity of many neu mutants. Moreover the left-handed coiled coil structure is fully consistent with recent results proving the role of rotational linkage of the transmembrane domain with the kinase domain. Comparison between the predicted dimer model and those presumed from experiments strongly suggests helix flexibility in the extracellular juxtamembrane region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号