首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

2.
1-[3-Deoxy-5-O-(4,4'-dimethoxytriphenylmethyl)-3-C-hydroxymethyl-2 -O-(2-methoxyethoxymethyl)-beta-D-erythro-pentofuranosyl]thymine (13) was synthesized from 1,2-isopropylidene-D-xylose (1) as a building block of modified oligonucleotides. Three types of novel oligonucleotides were synthesized from 13 and their T(m)s were compared with those of the corresponding natural oligonucleotides. It was found that our synthesized oligomers had lower affinity to DNA and RNA than the natural oligomers.  相似文献   

3.
1. An endonuclease has been isolated from the nuclei of rye (Secale cereale L) germ and partially purified. The enzyme shows optimum activity over the pH range 5.4-7.4 towards both DNA and RNA, and has no phosphomonoesterase or phosphodiesterase activity. 2. DNA is degraded by the rye germ nuclease to oligonucleotides of similar size, and RNA to oligonucleotides and mononucleotides containing a C-terminal 5'-phosphate group. 3. The rate of hydrolysis of nuclear acids by the enzyme decreases in the following order: native DNA greater than denatured DNA greater than RNA. Synthetic polynucleotides are hydrolysed at a rate decreasing in the order: poly(A) greater than poly(U) greater than poly(C) greater than poly(G).  相似文献   

4.
The loop of four thymines in the sodium form of the dimeric folded quadruplex [d(G3T4G3)]2 assumes a well-defined structure in which hydrogen bonding between the thymine bases appears to contribute to the stability and final conformation of the quadruplex. We have investigated the importance of the loop interactions by systematically replacing each thymine in the loop with a cytosine. The quadruplexes formed by d(G3CT3G3), d(G3TCT2G3), d(G3T2CTG3) and d(G3T3CG3) in the presence of 150 mM Na+ were studied by gel mobility, circular dichroism and 1H NMR spectroscopy. The major species formed by d(G3CT3G3), d(G3TCT2G3) and d(G3T3CG3) at 1 mM strand concentration at neutral pH is a dimeric folded quadruplex. d(G3T2CTG3) has anomalous behaviour and associates into a greater percentage of linear four-stranded quadruplex than the other three oligonucleotides at neutral pH and at the same concentration. The linear four-stranded quadruplex has a greater tendency to oligomerize to larger ill-defined structures, as demonstrated by broad 1H NMR resonances. At pH 4, when the cytosine is protonated, there is a greater tendency for each of the oligonucleotides to form some four-stranded linear quadruplex, except for d(G3T2CTG3), which has the reverse tendency. The experimental results are discussed in terms of hydrogen bonding within the thymine loop.  相似文献   

5.
An unique set of 5'-O- and 3'-O-phosphonomethyl derivatives of four natural 2'-deoxyribonucleosides, 1-(2-deoxy-beta-D-threo-pentofuranosyl)thymine, 5'-O- and 2'-O-phosphonomethyl derivatives of 1-(3-deoxy-beta-D-erythro-pentofuranosyl)thymine, and 1-(3-deoxy-beta-D-threo-pentofuranosyl)thymine, has been synthesized as a pool of monomers for the synthesis of modified oligonucleotides. The phosphonate moiety was protected with 4-methoxy-1-oxido-2-pyridylmethyl ester group, serving also as an intramolecular catalyst in the coupling step.  相似文献   

6.
A gene for T4 endonuclease V was constructed by joining chemically synthesized oligodeoxyribonucleotides and expressed efficiently in Escherichia coli under the control of the E. coli tryptophan promoter. Overproduced T4 endonuclease V, which can cleave thymine photodimers as well as the corresponding phosphodiester linkage of DNA, was used to investigate the precise mode of the reaction with single- or double-stranded synthetic DNA fragments containing a thymine photodimer. The substrates, three oligodeoxyribonucleotides, d(GCGGTTGGCG) (10-mer), d(CGAAGGTTGGAAGC) (14-mer), and d(CACGAAGGTTGGAAGCAC) (18-mer), were prepared by UV irradiation of the nascent oligonucleotides. These single-stranded oligonucleotides were cleaved by the enzyme with a concentration 100 times higher than that required for the corresponding duplexes. The Km values for the TT duplex (14- and 18-mer) were found to be on the order of 10(-8) M. Dissociation constants for the 14- and 18-mer duplexes were measured by a binding assay on a nitrocellulose filter and found to be 10(-9).  相似文献   

7.
The two ribo-configured nucleosides 1-(3-C-allyl-2-O-methyl-beta-D-ribo-pentofuranosyl)thymine 3 and (1S,5R,6R,8R)-5-hydroxy-6-(hydroxymethyl)-1-methoxy-8-(thymin-1-yl )- 2,7-dioxabicyclo[3.3.0]octane 6 have been transformed into their corresponding phosphoramidites, 5 and 8 respectively, and used as building blocks for the synthesis of modified oligonucleotides. The oligonucleotides were shown to hybridize with decreased binding affinity towards complementary single stranded DNA and RNA.  相似文献   

8.
Otvös L  Sági G 《Magyar onkologia》2004,48(3):221-227
Antisense oligonucleotides (AONs) provide an efficient approach for developing target-selective anticancer drugs, because they can inhibit gene expression sequence specifically. To improve the therapeutic effenciency of AONs, two new types of the compounds have been developed. The first group of antisense oligodeoxynucleotides investigated contains base modified nucleotide units. Incorporation of 5-substituted pyrimidines into AONs increases cell membrane permeability (a), duplex stability (b), and nuclease resistance (c). These properties were studied using a large number of model oligonucleotides. The application of 5-(1-hexynyl)dU has been found to be the best modification. Application of MMP-9 collagenase inhibitor oligonucleotides (potential metastasis inhibitors) containing these nucleotide units instead of thymidines increased the collagenase inhibition potency by one order of magnitude compared to that of parental oligonucleotide including thymine bases. The second group of the compounds investigated represents a new type of antisense oligonucleotide synthesized by the antisense directed prodrug therapy (ADPT) conception. According to this principle, a telomerase inhibitor AON was conjugated with 5-fluoro-2'-deoxyuridine (FdU) and oligo-FdUs by phosphodiester bond at the 3'-terminus. The antitumor activities of conjugates in comparison with that of FdU were tested in HT1080 human fibrosarcoma and HT29 human colon adenocarcinoma cell lines. In HT29 cell culture the antiproliferative activity of prodrugs significantly increased with increasing length of the 3'-(FdU)n tail. The conjugate with one FdU unit was about 5 times, while the AON-(FdU)3 analogue was almost 19 times more active than FdU. Antitumor activity of the prodrug containing six FdU units was extremely high (relative efficiency = 26.6), therefore, in vivo testing of this analogue seems to be reasonable and promising. Antiproliferative activity of (FdU)n conjugated with a telomerase inhibitor increased by 5-13 times in HT1080 cells as compared to FdU administered in nucleoside form.  相似文献   

9.
C I Wang  J S Taylor 《Biochemistry》1992,31(14):3671-3681
A previous study of UV-induced (254 nm) mutations in the lacI gene of Escherichia coli found that frameshift mutations accounted for about 35% of the observed mutations and that these mutations occurred predominantly at An.Tn sequences [Miller, J.H. (1985) J. Mol. Biol. 182, 48-65]. Because An.Tn sequences are hotspots for cis-syn thymine dimer formation [Brash, D.E., & Haseltine, W. A. (1982) Nature 298, 189-192], it would appear that UV-induced frameshift mutations are the result of an error during replicative bypass of a thymine dimer within such a sequence. To test the validity of such a proposal, replication experiments were carried out on templates containing cis-syn thymine dimers at each of the five possible sites of a T6 tract. The 59-mer templates were prepared by ligating oligonucleotides containing an EcoRI site to the 5'-end of decamers containing the cis-syn thymine dimer and oligonucleotides containing the primer site to the 3'-end. Primer-extension reactions were then carried out on these templates with a 3'----5' exonuclease-deficient (exo-) Klenow fragment of E. coli polymerase I and an exo-T7 polymerase (Sequenase Version 2.0). The replicative bypass products were cleaved with EcoRI to rigorously establish and quantify the presence of frameshift mutations. Both polymerases were able to bypass dimers at all sites, but only the exo-T7 polymerase led to detectable frameshifts, both -1 (approximately 30%) and -2 (approximately 5%), and only with the template containing a cyclobutane dimer at the second site from the 5'-end of the T6 tract. Sequencing of the T7 polymerase-catalyzed bypass products of all templates demonstrated that within the limits of discrimination only As were introduced opposite the dimer-containing T tracts. The only exception was for the template with the dimer at the second site which led to a readily detectable amount of a substitution mutation (approximately 30%) opposite the 5'-thymine of the T6 tract. A mechanism involving a competition between reversible misalignment and realignment steps and irreversible elongation steps is proposed to explain the origin of both the frameshift and the substitution mutations. The implications of this work to the mechanism of UV-induced frameshift and substitution mutations at T tracts in vivo are discussed.  相似文献   

10.
An antisense oligonucleotide is expected as an innovative drug for cancer and hereditary diseases. In this paper, we designed and synthesized DNAs containing a novel nucleoside analog, 1-(4-C-aminomethyl-2-deoxy-2-fluoro-β-d-arabinofuranosyl)thymine, and evaluated their properties. It was revealed that the analog slightly decreases the thermal stability of the DNA/RNA duplex but significantly increases the stability of DNA in a buffer containing bovine serum. Furthermore, it turned out that the DNA/RNA duplex containing the analog is a good substrate for Escherichia coli RNase H. Thus, DNAs containing the nucleoside analog would be good candidates for the development of therapeutic antisense oligonucleotides.  相似文献   

11.
Sollogoub M  Darby RA  Cuenoud B  Brown T  Fox KR 《Biochemistry》2002,41(23):7224-7231
We have prepared oligonucleotides containing the novel base analogue 2'-aminoethoxy,5-propargylamino-U in place of thymidine and examined their ability to form intermolecular and intramolecular triple helices by DNase I footprinting and thermal melting studies. The results were compared with those for oligonucleotides containing 5-propargylamino-dU and 2'-aminoethoxy-T. We find that the bis-substituted derivative produces a large increase in triplex stability, much greater than that produced by either of the monosubstituted analogues, which are roughly equipotent with each other. Intermolecular triplexes with 9-mer oligonucleotides containing three or four base modifications generate footprints at submicromolar concentrations even at pH 7.5, in contrast to the unmodified oligonucleotide, which failed to produce a footprint at pH 5.0, even at 30 microM. UV- and fluorescence melting studies with intramolecular triplexes confirmed that the bis-modified base produces a much greater increase in T(m) than either modification alone.  相似文献   

12.
A method has been developed to attach 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen to the 5 position of thymine bases during solid-phase oligonucleotide synthesis. UV irradiation of triplex-forming oligonucleotides (TFOs) containing internally attached psoralens produces photoadducts at TpA steps within target duplexes, thus relaxing the constraints on selection of psoralen target sequences. Photoreaction of TFOs containing two psoralens, located at the 5'- and 3'-ends, has been used to create double-strand cross-links (triplex staples) at both termini of the TFO. Such complexes have no free single-stranded ends. TFOs containing 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen, 3-methyl-2-aminopyridine, and 5-(3-aminoprop-2-ynyl)deoxyuridine formed photoadducts with target duplexes under near-physiological conditions.  相似文献   

13.
We previously reported the chemical synthesis of oligonucleotides containing thymine glycol, a major form of oxidative DNA damage. In the preparation of the phosphoramidite building block, the predominant product of the osmium tetroxide oxidation of protected thymidine was (5R,6S)-thymidine glycol. To obtain the building block of the other isomer, (5S,6R)-thymidine glycol, in an amount sufficient for oligonucleotide synthesis, the Sharpless asymmetric dihydroxylation (AD) reaction was examined. Although the reaction was very slow, (5S,6R)-thymidine glycol was obtained in preference to the (5R,6S) isomer. The ratio of (5S,6R)- and (5R,6S)-thymidine glycols was 2:1, and a trans isomer was also formed. When an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, was used as a co-solvent, the reaction became faster, and the yield was improved without changing the preference. The phosphoramidite building block of (5S,6R)-thymidine glycol was prepared, and oligonucleotides containing 5S-thymine glycol were synthesized. One of the oligonucleotides was used to analyze the binding of distamycin A to thymine glycol-containing DNA by Circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR) measurements. Distamycin A bound to a duplex containing either isomer of thymine glycol within the AATT target site, and its binding was observed even when the thymine glycol was placed opposite cytosine.  相似文献   

14.
In this work we examine the carbohydrate binding properties of human placental mannose receptor (HMR) using a rapid and sensitive enzyme-linked immunosorbent microplate assay. The assay is based on the inhibition of binding of highly purified receptor to yeast mannan-coated 96-well plates. The specificity of ligand binding was inferred from the potency of different saccharides in blocking HMR binding to the mannan-coated wells. The relative inhibitory potency of monosaccharides was L-Fuc greater than D-Man greater than D-Glc greater than D-GlcNAc greater than Man-6-P much greater than D-Gal much greater than L-Rha much greater than GalNAc. The inhibitory potency of mannose increased by two orders of magnitude when linear oligomers were used. Oligomers containing alpha-1-3- and alpha-1-6-linked mannose residues were more inhibitory than those containing alpha-1-2- and alpha-1-4-linked mannoses. Linear or branched oligomannosides larger than three units did not have a significant influence on their inhibitory potency; rather, potency was found to decrease in comparison with oligomannosides with three units. Compared to linear oligomers, inhibition of binding was the best using branched mannose oligosaccharides, alpha-D-Man-bovine serum albumin conjugates, or mannan. A model is discussed in which branched ligand is bound to spatially distinct sites on the HMR.  相似文献   

15.
The activity of human methylpurine DNA N-glycosylase (hMPG) for major substrates was directly compared using two types of substrates, i.e., natural DNA and synthetic oligonucleotides. By the use of ARP assay detecting abasic sites in DNA, we first investigated the activity on the natural DNA substrates containing methylpurines, ethenopurines, or hypoxanthine (Hx) prepared by the conventional methods. After the treatment with hMPG, the amount of AP sites in methylated DNA was much higher than that in DNA containing ethenopurines or Hx. The oligodeoxynucleotide having a single 7-methylguanine (7-mG) was newly synthesized in addition to 1, N(6)-ethenoadenine (epsilonA)-, Hx-, and 8-oxoguanine-containing oligonucleotides. 7-mG was effectively excised by hMPG, though it might be less toxic than the other methylated bases with respect to mutagenesis and cell killing. The kinetic study demonstrated that k(cat)/K(m) ratios of the enzyme for epsilonA, Hx, and 7-mG were 2.5 x 10(-3), 1.4 x 10(-3), and 4 x 10(-4) min(-1) nM(-1), respectively. The oligonucleotides containing epsilonA effectively competed against 7-mG, while Hx substrates showed unexpectedly low competition. Concerning the effect of the base opposite damage, hMPG much preferred Hx.T to other Hx pairs, and epsilonA.C and epsilonA.A pairs were better substrates than epsilonA.T.  相似文献   

16.
5-Formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. The elucidation of repair mechanisms for 5-foU will yield important insights into the biological consequences of the lesion. Recently, we reported that 5-foU is recognized and removed from DNA by Escherichia coli enzymes Nth (endonuclease III), Nei (endonuclease VIII) and MutM (formamidopyrimidine DNA glycosylase). Human cells have been shown to have enzymatic activities that release 5-foU from X-ray-irradiated DNA, but the molecular identities of these activities are not yet known. In this study, we demonstrate that human hNTH1 (endonuclease III homolog) has a DNA glycosylase/AP lyase activity that recognizes 5-foU in DNA and removes it. hNTH1 cleaved 5-foU-containing duplex oligonucleotides via a β-elimination reaction. It formed Schiff base intermediates with 5-foU-containing oligonucleotides. Furthermore, hNTH1 cleaved duplex oligonucleotides containing all of the 5-foU/N pairs (N = G, A, T or C). The specific activities of hNTH1 for cleavage of oligonucleotides containing 5-foU and thymine glycol were 0.011 and 0.045 nM/min/ng protein, respectively. These results indicate that hNTH1 has DNA glycosylase activity with the potential to recognize 5-foU in DNA and remove it in human cells.  相似文献   

17.
Metabolites of vinyl chloride react with cytosine in DNA to form 3,N(4)-ethenocytosine. Recent studies suggest that ethenocytosine is repaired by the base excision repair pathway with the ethenobase being removed by thymine-DNA glycosylase. Here single turnover kinetics have been used to compare the excision of ethenocytosine by thymine-DNA glycosylase with the excision of thymine. The effect of flanking DNA sequence on the excision of ethenocytosine was also investigated. The 34-bp duplexes studied here fall into three categories. Ethenocytosine base-paired with guanine within a CpG site (i.e. CpG.(epsilon)C-DNA) was by far the best substrate having a specificity constant (k(2)/K(d)) of 25.1 x 10(6) m(-1) s(-1). The next best substrates were DNA duplexes containing TpG.(epsilon)C, GpG.(epsilon)C, and CpG.T. These had specificity constants 45-130 times smaller than CpG.(epsilon)C-DNA. The worst substrates were DNA duplexes containing ApG.(epsilon)C and TpG.T, which had specificity constants, respectively, 1,600 and 7,400 times lower than CpG.(epsilon)C-DNA. DNA containing ethenocytosine was bound much more tightly than DNA containing a G.T mismatch. This is probably because thymine-DNA glycosylase can flip out ethenocytosine from a G.(epsilon)C base pair more easily than it can flip out thymine from a G.T mismatch. Because thymine-DNA glycosylase has a larger specificity constant for the removal of ethenocytosine, it has been suggested its primary purpose is to deal with ethenocytosine. However, these results showing that thymine-DNA glycosylase has a strong sequence preference for CpG sites in the excision of both thymine and ethenocytosine suggest that the main role of thymine-DNA glycosylase in vivo is the removal of thymine produced by deamination of 5-methylcytosine at CpG sites.  相似文献   

18.
The P-N bond in oligonucleotide P3' --> N5' phosphoramidates (5'-amino-DNA) is known to be chemoselectively cleaved under mild acidic conditions. We prepared homopyrimidine oligonucleotides containing 5'-amino-5'-deoxythymidine (5'-amino-DNA thymine monomer) or its conformationally locked congener, 5'-amino-2',4'-BNA thymine monomer, at midpoint of the sequence. The effect of triplex formation with homopurineohomopyrimidine dsDNA targets on acid-mediated hydrolysis of the P3' --> N5' phosphoramidate linkage was evaluated. Very interestingly, it was found that the triplex formation significantly accelerates the P-N bond cleavage.  相似文献   

19.
Abstract

The two ribo-configured nucleosides 1-(3-C-allyl-2–0-methyl-β-D-ribo-pentofuranosyl)thymine 3 and (1S,5R,6R,8R)-5-hydroxy-6-(hydroxymethyl)-1-methoxy-8-(thymin-1-yl)-2,7-dioxabicyclo[3.3.0]octane 6 have been transformed into their corresponding phosphoramidites, 5 and 8 respectively, and used as building blocks for the synthesis of modified oligonucleotides. The oligonucleotides were shown to hybridize with decreased binding affinity towards complementary single stranded DNA and RNA.  相似文献   

20.
Endonuclease III (Endo III) is a base excision repair enzyme that recognizes oxidized pyrimidine bases including thymine glycol. This enzyme is a glycosylase/lyase and forms a Schiff base-type intermediate with the substrate after the damaged base is removed. To investigate the mechanism of its substrate recognition by X-ray crystallography, we have synthesized oligonucleotides containing 2′-fluorothymidine glycol, expecting that the electron-withdrawing fluorine atom at the 2′ position would stabilize the covalent intermediate, as observed for T4 endonuclease V (Endo V) in our previous study. Oxidation of 5′- and 3′-protected 2′-fluorothymidine with OsO4 produced two isomers of thymine glycol. Their configurations were determined by NMR spectroscopy after protection of the hydroxyl functions. The ratio of (5R,6S) and (5S,6R) isomers was 3:1, whereas this ratio was 6:1 in the case of the unmodified sugar. Both of the thymidine glycol isomers were converted to the corresponding phosphoramidite building blocks and were incorporated into oligonucleotides. When the duplexes containing 2′-fluorinated 5R- or 5S-thymidine glycol were treated with Escherichia coli endo III, no stabilized covalent intermediate was observed regardless of the stereochemistry at C5. The 5S isomer was found to form an enzyme–DNA complex, but the incision was inhibited probably by the fluorine-induced stabilization of the glycosidic bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号