首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The question we address in this article is how hybridization in the recent past can be detected in recently evolved species. Such species may not have evolved genetic incompatibilities and may hybridize with little or no fitness loss. Hybridization can be recognized by relatively small genetic differences between sympatric populations because sympatric populations have the opportunity to interbreed whereas allopatric populations do not. Using microsatellite DNA data from Darwin's finches in the Galapagos archipelago, we compare sympatric and allopatric genetic distances in pairs of Geospiza and Camarhynchus species. In agreement with the hybridization hypothesis, we found a statistically strong tendency for a species to be more similar genetically to a sympatric relative than to allopatric populations of that relative. Hybridization has been studied directly on two islands, but it is evidently more widespread in the archipelago. We argue that introgressive hybridization may have been a persistent feature of the adaptive radiation through most of its history, facilitating evolutionary diversification and occasionally affecting both the speed and direction of evolution.  相似文献   

2.
Darwin's finches in the Galápagos archipelago are an unusual example of adaptive radiation in that the basal split separates two lineages of warbler finches (Certhidea olivacea and Certhidea fusca) believed until recently to be only one species. The large genetic difference between them contrasts with their similarity in plumage, size, shape, and courtship behavior. They differ in song, which is a key factor in premating isolation of other sympatric Darwin's finches. We conducted playback experiments to see whether members of the population of C. olivacea on Santa Cruz Island would respond to songs of C. fusca from two islands, Genovesa and Pinta, and songs of C. olivacea from another island (Isabela). Another set of experiments was performed, using the same playback tapes, with C. fusca on Genovesa. Some members of both populations responded to all playbacks; therefore, the hypothesis of complete premating isolation on the basis of song is rejected. Discrimination between songs of the two lineages was inconsistent. We conclude that premating barriers to interbreeding among the tested populations have not arisen in the 1.5-2.0 m.yr. of their geographical isolation on different islands. This contrasts with strong premating barriers between more recently derived sympatric species. Early learning of song associated with morphology is later used in mate recognition. This explains why sympatric species that are vocally and morphologically distinct yet genetically less differentiated than Certhidea do not interbreed, whereas the Certhidea lineages that are genetically well differentiated but vocally and morphologically similar have no apparent premating barrier. We discuss this unusual situation in terms of the forces that have produced similarities and differences in song, morphology, and ecology and their relevance to phylogenetic and biological species concepts. Neither principles nor details are unique to Darwin's finches, and we conclude by pointing out strong parallels with some continental birds.  相似文献   

3.
We estimated heritabilities, and genetic and phenotypic correlations between beak and body traits in the song sparrow ( Melospiza melodia ). We compared these estimates to values for the same traits in the Galápagos finches, Geospiza (Boag, 1983; Grant, 1983). Morphological variance is low in the song sparrow, and our results show that genetic and phenotypic correlations are considerably lower than correlations in the morphologically more variable Geospiza. Comparison using a larger sample of Galapagos populations confirms the existence of an association between variance and correlation for phenotypic values. We suggest two possible explanations for this association. First, most traits studied are functionally related, and the joint evolution of variance and correlation may have resulted from stabilizing selection about a line of optimal allometry between traits. Alternatively, introgression between populations and species could have caused correlation and variance to evolve jointly. Both selection and introgression were probably influential in producing the observed pattern, but it is not possible to estimate their relative importance with current data. Genetic and phenotypic correlations were correlated in the song sparrow, but heritabilities of traits varied greatly. As a result, the genetic variance-covariance matrix for traits is not simply a constant multiple of the phenotypic matrix. Evolutionary response to natural selection cannot, therefore, be predicted from the measurement of phenotypic characteristics alone.  相似文献   

4.
Summary Some populations of Darwin's Finches (Emberizinae) are exceptionally variable in body size and beak traits as a result of introgressive hybridization. A study of museum specimens of honeycreeper-finches (Carduelinae) from the Hawaiian islands was undertaken to see if the same phenomenon was manifested by a different phyletic group of finches in a different archipelago. Five hundred and twenty-four specimens of the seven species with finch-like bills were measured and their coefficients of variation were compared with those of the ground finch group (six species) of Darwin's Finches. Coefficients were smaller in the Hawaiian finches. Sympatric and, hence, potentially hybridizing species on the island of Hawaii were not consistently more variable than the allopatric species on other islands in the archipelago. The one species with both sympatric and allopatric populations did not show greater variation in the sympatric population. There is little evidence from these comparisons of hybridization occurring in the last 100 years. The difference between the two finch faunas can be explained in terms of two factors. Finches have been present for a longer time in the Hawaiian archipelago than in the Galápagos archipelago and have had more time to not only diversify but to evolve pre- and post-zygotic isolating mechanisms. In the generally less seasonal and floristically richer Hawaiian islands they have evolved greater dietary specializations. Beak traits adapted to specialist feeding may have been under stronger stabilizing selection and hybrids (if formed) may have been at a strong disadvantage in the absence of an ecological niche intermediate between the niches of the two parental species. Results of published electrophoretic studies of genetic variation suggest that the early phase of differentiation, involving occasional introgressive hybridization, may last for up to 5 million years.  相似文献   

5.
Hybrid populations selectively filter gene introgression between species   总被引:12,自引:0,他引:12  
Hybrids have long been recognized as a potential pathway for gene flow between species that can have important consequences for evolution and conservation biology. However, few studies have demonstrated that genes from one species can introgress or invade another species over a broad geographic area. Using 35 genetically mapped restriction fragment length polymorphism (RFLP) markers of two species of cottonwoods (Populus fremontii x P. angustifolia) and their hybrids (n = 550 trees), we showed that the majority of the genome is prohibited from introgressing from one species into the other. However, this barrier was not absolute; Fremont cpDNA and mtDNA were found throughout the geographic range of narrowleaf cottonwood, and 20% of the nuclear markers of Fremont cottonwood introgressed varying distances (some over 100 km) into the recipient species' range. Rates of nuclear introgression were variable, but two nuclear markers introgressed as fast as the haploid, cytoplasmically inherited chloroplast and mitochondrial markers. Our genome-wide analysis provides evidence for positive, negative, and neutral effects of introgression. For example, we predict that DNA fragments that introgress through several generations of backcrossing will be small, because small fragments are less likely to contain deleterious genes. These results argue that recombination will be important, that introgression can be very selective, and that evolutionary forces within the hybrid population to effectively "filter" gene flow between species. A strong filter may make introgression adaptive, prevent genetic assimilation, lead to relaxed isolating mechanisms, and contribute to the stability of hybrid zones. Thus, rather than hybridization being a negative factor as is commonly argued, natural hybridization between native species may provide important genetic variation that impacts both ecological and evolutionary processes. Finally, we propose two hypotheses that contrast the likelihood of contemporary versus ancient introgression in this system.  相似文献   

6.
We use genetic divergence at 16 microsatellite loci to investigate how geographical features of the Galápagos landscape structure island populations of Darwin's finches. We compare the three most genetically divergent groups of Darwin's finches comprising morphologically and ecologically similar allopatric populations: the cactus finches (Geospiza scandens and Geospiza conirostris), the sharp-beaked ground finches (Geospiza difficilis) and the warbler finches (Certhidea olivacea and Certhidea fusca). Evidence of reduced genetic diversity due to drift was limited to warbler finches on small, peripheral islands. Evidence of low levels of recent interisland migration was widespread throughout all three groups. The hypothesis of distance-limited dispersal received the strongest support in cactus and sharp-beaked ground finches as evidenced by patterns of isolation by distance, while warbler finches showed a weaker relationship. Support for the hypothesis that gene flow constrains morphological divergence was only found in one of eight comparisons within these groups. Among warbler finches, genetic divergence was relatively high while phenotypic divergence was low, implicating stabilizing selection rather than constraint due to gene flow. We conclude that the adaptive radiation of Darwin's finches has occurred in the presence of ongoing but low levels of gene flow caused by distance-dependent interisland dispersal. Gene flow does not constrain phenotypic divergence, but may augment genetic variation and facilitate evolution due to natural selection. Both microsatellites and mtDNA agree in that subsets of peripheral populations of two older groups are genetically more similar to other species that underwent dramatic morphological change. The apparent decoupling of morphological and molecular evolution may be accounted for by a modification of Lack's two-stage model of speciation: relative ecological stasis in allopatry followed by secondary contact, ecological interactions and asymmetric phenotypic divergence.  相似文献   

7.
One of the major tenets of the modern synthesis is that genetic differentiation among subpopulations is translated over time into genetic differentiation among species. Phylogeographic exploration is therefore essential to the study of speciation because it can reveal the presence of subpopulations that may go on to become species or that may already represent cryptic species. Acoustic species-specific mating signals provide a significant advantage for the recognition of cryptic or incipient species. Because the majority of species do not have such easily recognized premating signals, data from acoustically signaling species can serve as a valuable heuristic tool. Acoustic signals are also convenient tools for recognizing hybridization events. Here, we demonstrate that evidence of hybridization in the form of intermediate song phenotypes is present in many contact zones between species of the New Zealand grass cicadas of the Kikihia muta species complex and that recurring mitochondrial DNA (mtDNA) introgression has created misleading patterns that make it difficult to identify certain taxa using song or mtDNA alone. In one case, introgression appears to have occurred between allopatric taxa by dispersal of introgressed populations of an intermediary species ("hybridization by proxy"). We also present a comparison of mtDNA-tree- and song-based taxonomies obtained for the K. muta complex. We find that 12 mtDNA candidate species are identified using shifts in phylogenetic branching rate found by a single-threshold mixed Yule-coalescent lineage model, while only 7 candidate species are identified using songs. Results from the Yule-coalescent model are dependent on factors such as the number of modeled thresholds and the inclusion of duplicate haplotypes. Genetic distances within song species reach a maximum at about 0.028 substitutions/site when likely cases of hybridization and introgression are excluded. Large genetic breaks or "gaps" are not observed between some northern (warmer climate) song clades, possibly because climate-induced bottlenecks have been less severe. These results support ongoing calls for multimarker genetic studies as well as "integrative taxonomy" that combines information from multiple character sources, including behavior, ecology, geography, and morphology.  相似文献   

8.
本文主要论述物种形成的三个阶段 :建群、线形分异和生殖隔离。首先介绍一项通过时间产生分异的调查 ,然后检测种群间基因交流的障碍 ,最后描述一个自然事件从而分析建群过程。本项工作是在加拉帕戈斯群岛中的达芬梅杰岛上长期研究达尔文雀进化工作的一部分 ,研究组成员由格兰特、笔者和其他同事组成。岛上发生适应辐射的时间并不长 ,现存的 1 4种达尔文雀由 2 0 0或 3 0 0万年前的一个祖先分化而成。极端的年间气候波动改变了达尔文雀的生态条件和食物供给。达尔文雀种群受到这些变化的影响 ,通过重复的进化反应 ,发生了自然选择。通过 3 0年的积累 ,中地雀 (Geospizafortis)和仙人掌地雀 (G .scandens)种群的体型大小和喙部形状发生了显著的变化。达尔文雀的鸣叫是在幼鸟时期通过学习而形成的 ,类似于印痕过程 ,鸣叫对保持种间的生殖隔离起着一定的作用。但是在一些特殊的生态条件下 ,生殖隔离可以被由于错误印痕所形成的鸣叫而冲破 ,导致种间杂交和基因渗入 ,当然 ,这种情况非常罕见。自然选择可以使基因流从一个物种流动到另一个物种从而增加变异。 1 983年 ,大地雀 (G .magnirostris)在达芬梅杰岛上建群。最初岛上只有拥有共同亲鸟的 2只雄鸟和 1只雌鸟通过不  相似文献   

9.
Sexual behaviours often evolve rapidly and are critical for sexual isolation. We suggest that coordinated sexual signals and preferences generate stabilizing selection, favouring the accumulation of many small‐effect mutations in sexual communication traits. Rapid radiation of a sexual behaviour used in signalling, song pulse rate, has been observed in the Hawaiian cricket genus Laupala. Using marker‐assisted introgression, we isolated five known quantitative trait loci (QTL) influencing species‐level differences in pulse rate from one species, L. paranigra, into a closely related species, L. kohalensis. All five QTL were found to have a significant effect on song and appear to be largely additive in backcross introgression lines. Furthermore, all effect sizes were small in magnitude. Our data provide support for the hypothesis that stabilizing selection on sexual signals in Laupala creates genetic conditions favourable to incremental divergence during speciation, through the evolution of alleles of minor rather than major phenotypic effects.  相似文献   

10.
Parallel evolution can occur through selection on novel mutations, standing genetic variation or adaptive introgression. Uncovering parallelism and introgressed populations can complicate management of threatened species as parallelism may have influenced conservation unit designations and admixed populations are not generally considered under legislations. We examined high coverage whole‐genome sequences of 30 caribou (Rangifer tarandus) from across North America and Greenland, representing divergent intraspecific lineages, to investigate parallelism and levels of introgression contributing to the formation of ecotypes. Caribou are split into four subspecies and 11 extant conservation units, known as designatable units (DUs), in Canada. Using genomes from all four subspecies and six DUs, we undertake demographic reconstruction and confirm two previously inferred instances of parallel evolution in the woodland subspecies and uncover an additional instance of parallelism of the eastern migratory ecotype. Detailed investigations reveal introgression in the woodland subspecies, with introgressed regions found spread throughout the genomes encompassing both neutral and functional sites. Our investigations using whole genomes highlight the difficulties in unequivocally demonstrating parallelism through adaptive introgression in nonmodel species with complex demographic histories, with standing variation and introgression both potentially involved. Additionally, the impact of parallelism and introgression on conservation policy for management units needs to be considered in general, and the caribou designations will need amending in light of our results. Uncovering and decoupling parallelism and differential patterns of introgression will become prevalent with the availability of comprehensive genomic data from nonmodel species, and we highlight the need to incorporate this into conservation unit designations.  相似文献   

11.
Sexual selection on multiple signals may lead to differential rates of signal introgression across hybrid zones if some signals contribute to reproductive isolation but others facilitate gene flow. Competition among males is one powerful form of sexual selection, but male behavioral responses to multiple traits have not been considered in a system where traits have introgressed differentially. Using playbacks, mounts, and a reciprocal experimental design, we tested the hypothesis that male responses to song and plumage in two subspecies of red‐backed fairy‐wren (Malurus melanocephalus) explain patterns of differential signal introgression (song has not introgressed, whereas plumage color has introgressed asymmetrically). We found that males of both subspecies discriminated symmetrically between subspecies’ songs at a long range, but at a close range, we found that aggression was equal for both subspecies’ plumage and songs. Taken together, our results suggest that male behavioral responses hinder the introgression of song, but allow for the observed asymmetrical introgression of plumage. Our results highlight how behavioral responses are a key component of signal evolution when recently divergent taxa come together, and how differential responses to multiple signals may lead to differential signal introgression and novel trait combinations.  相似文献   

12.
Mutualisms are balanced antagonistic interactions where both species gain a net benefit. Because mutualisms generate resources, they can be exploited by individuals that reap the benefits of the interaction without paying any cost. The presence of such 'cheaters' may have important consequences, yet we are only beginning to understand how cheaters evolve from mutualists and how their evolution may be curtailed within mutualistic lineages. The yucca-yucca moth pollination mutualism is an excellent model in this context as there have been two origins of cheating from within the yucca moth lineage. We used nuclear and mitochondrial DNA markers to examine genetic structure in a moth population where a cheater species is parapatric with a resident pollinator. The results revealed extensive hybridization between pollinators and cheaters. Hybrids were genetically intermediate to parental populations, even though all individuals in this population had a pollinator phenotype. The results suggest that mutualisms can be stable in the face of introgression of cheater genes and that the ability of cheaters to invade a given mutualism may be more limited than previously appreciated.  相似文献   

13.
Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.  相似文献   

14.
Birdsong is a sexually selected trait that could play an important evolutionary role when related taxa come into secondary contact. Many songbird species, however, learn their songs through copying one or more tutors, which complicates the evolutionary outcome of such contact. Two subspecies of a presumed vocal learner, the grey‐breasted wood‐wren (Henicorhina leucophrys), replace each other altitudinally across the western slope of the Ecuadorian Andes. These subspecies are morphologically very similar, but show striking differences in their song. We examined variation in acoustic traits and genetic composition across the altitudinal range covered by both subspecies and between two allopatric populations. The acoustic boundary between the subspecies was found to be highly abrupt across a narrow elevational range with virtually no evidence of song convergence. Mixed singing and use of hetero‐subspecific song occurred in the contact zone and was biased towards the use of leucophrys song types. Hetero‐subspecific song copying by hilaris and not by leucophrys reflected a previously found asymmetric pattern of response to song playback. Using amplified fragment length polymorphisms (AFLP) markers, we detected hybridization in the contact zone and asymmetric introgression in parapatric populations, with more leucophrys alleles present in hilaris populations than vice versa. This pattern may be a trail of introgression due to upslope displacement of leucophrys by hilaris. Our data suggest that song learning may impact speciation and hybridization in contrasting ways at different spatial scales: although learning may speed up population divergence in songs, thereby enhancing assortative mating and reducing gene flow, it may at a local level also lead to the copying of heterospecific songs, therefore allowing some level of hybridization and introgression.  相似文献   

15.
A decade of research on the evolution of Galápagos land birds is reviewed, and outstanding questions to be answered are highlighted. Evolutionary studies have been restric 1 almost entirely to the four species of mockingbirds and the 13 species of Darwin's finches. Long-term field studies have been initiated on representatives of both groups. Co-operative breeding has been discovered in the mockingbirds (and hawks).
Lack's (1945, 1947) monographic treatment of Darwin's finches has been largely upheld and extended by morphological, ecological, behavioural and biochemical studies. While the phylogenetic origins of Darwin's finches still remain uncertain, the major groupings of the finches have been confirmed by the results of protein polymorphism analysis. Fossils of Darwin's finches have been discovered recently: their potential for illuminating evolutionary change has not yet been realized. Three other major developments are (1) quantitative confirmation of the role of interspecific competition in the adaptive radiation, (2) experimental confirmation of the role of morphological and song cues in species recognition, and experimental evidence of their evolution in the speciation process, and (3) direct study of natural selection on heritable quantitative traits in a population, and identification of its causes. Continuing studies of population variation are likely to reveal the contemporary importance of selection, migration and hybridization, and thereby help us to more fully understand the causes of the adaptive radiation of Darwin's finches.  相似文献   

16.
鸟类鸣唱的功能通常是吸引配偶,对于建立繁殖隔离也是非常重要的。现有的研究认为鸟类鸣唱表演可能受到鸟类喙型变化的影响。达尔文鸣雀是一类用来验证喙型和鸣唱表演关系的模型物种,前人的研究认为较低的元音演奏与更大的喙相关。本文用在Floreana岛屿生活的达尔文小树雀(Camarhynchus parvulus)来验证喙型和元音演奏的关系。结果显示,喙型大小与元音演奏之间无相关性。这个发现与过去对小树雀中的研究结果相似,但却与达尔文鸣雀中更大体型的鸟类研究结果相反。讨论了研究结果在物种的生态分化和生态变异之间的前后关系。  相似文献   

17.
Geographic variation in male bird songs has been studied extensively, but there have been few investigations of geographic variation in female songs or sex differences in patterns of geographic variation. We compared patterns of variation in male and female songs of eastern whipbirds Psophodes olivaceus by analyzing recordings from 16 populations across the species’ geographic range in eastern Australia. We found remarkably different patterns of geographic variation between the sexes. Female eastern whipbird songs are easily categorized into discrete song types. Song types are shared between nearby females, but female songs show pronounced differences at a continental scale. In contrast, male eastern whipbird songs show high consistency throughout the species’ geographic range. All recorded males share the ability to transpose the frequency of the introductory whistle and most recorded males share the ability to vary the direction of the slope of the terminal whip crack. For eight of nine measured variables, female songs show significantly higher levels of variation than male songs. We discuss whether sex differences in dispersal, song learning strategies, and song function may explain these sex differences in patterns of song variation. We suggest that eastern whipbirds have experienced a decoupling of male and female song learning strategies and that the songs of each sex have responded to different selective pressures in the context of countersinging interactions. We speculate that consistency in male songs throughout the geographic range of eastern whipbirds may arise through female preference for males that perform large bandwidth whip cracks.  相似文献   

18.
The trajectory of speciation involves geographic isolation of ancestral populations followed by divergence by natural selection, genetic drift or sexual selection. Once started, the process may experience fits and starts, as sometimes diverging populations intermittently reconnect. In theory populations might cycle between stages of differentiation and never attain species status, a process we refer to as Sisyphean evolution. We argue that the six putative ground finch species (genus Geospiza) of the Galápagos Islands represent a dramatic example of Sisyphean evolution that has been confused with the standard model of speciation. The dynamic environment of the Galápagos, closely spaced islands, and frequent dispersal and introgression have prevented the completion of the speciation process. We suggest that morphological clusters represent locally adapted ecomorphs, which might mimic, and have been confused with, species, but these ecomorphs do not form separate gene pools and are ephemeral in space and time. Thus the pattern of morphological, behavioural and genetic variation supports recognition of a single species of Geospiza, which we suggest should be recognized as Darwin's ground finch (Geospiza magnirostris). We argue that instead of providing an icon of insular speciation and adaptive radiation, which is featured in nearly every textbook on evolutionary biology, Darwin's ground finch represents a potentially more interesting phenomenon, one of transient morphs trapped in an unpredictable cycle of Sisyphean evolution. Instead of revealing details of the origin of species, the mechanisms underlying the transient occurrence of ecomorphs provide one of the best illustrations of the antagonistic effects of natural selection and introgression.  相似文献   

19.
We investigated phylogeographic divergence among populations of Galápagos warble finches. Their broad distribution, lack of phenotypic differentiation and low levels of genetic divergence make warbler finches an appropriate model to study speciation in allopatry. A positive relationship between genetic and geographical distance is expected for island taxa. Warbler finches actually showed a negative isolation by distance relationship, causing us to reject the hypothesis of distance-limited dispersal. An alternative hypothesis, that dispersal is limited by habitat similarity, was supported. We found a positive correlation between genetic distances and differences in maximum elevation among islands, which is an indicator of ecological similarity. MtDNA sequence variation revealed monophyletic support for two distinct species. Certhidea olivacea have recently dispersed among larger central islands, while some Certhidea fusca have recently dispersed to small islands at opposite ends of the archipelago. We conclude that females have chosen to breed on islands with habitats similar to their natal environment. Habitat selection is implicated as an important component of speciation of warbler finches, which is the earliest known divergence of the adaptive radiation of Darwin's finches. These results suggest that small populations can harbour cryptic but biologically meaningful variation that may affect longer term evolutionary processes.  相似文献   

20.
While the genetic impact of Pleistocene climate change on temperate species has been well characterized, especially in Europe and North America, an effect on the diversification of species on oceanic islands has been less well studied. This is perhaps a surprising observation given the traditional and continuing contribution of island species (e.g. Darwin's finches, Partula snails, Lord Howe Island palms) to understand speciation. Here, we combine mitochondrial and microsatellite data from the ground-living and arboreal Mandarina snails of the oceanic, subtropical Hahajima archipelago (Ogasawara, colloquially 'Galápagos of the Orient') to enable a comparative approach to understand the impact of the Pleistocene glaciations on their phylogeography. Prior work suggested that several narrowly divergent, ground-living species pairs of Mandarina populations on the outlying islands, as well as the low-lying southern and central parts of Hahajima, probably underwent bottlenecks and subsequent expansions during the recent Pleistocene. Here, the most striking finding is that largely arboreal species have deeply divergent, geographically restricted mitochondrial lineages, in contrast to a census size that is at least an order of magnitude lower than ground-living snails. As populations of both types are highly polymorphic at microsatellite loci, the systematic difference at the mitochondrial locus probably indicates a contrasting effect of the Pleistocene climate cycles on the two groups. We speculate that this may have partly come about owing to a reduced efficacy of natural selection on the more greatly structured populations of arboreal snails. If so, then a prediction is that the genome of other snails, or other species with limited mobility, will show a similar response to the Pleistocene climate cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号