首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Basement membrane-associated heparan sulfate proteoglycan (HSPG) was extracted from isolated porcine glomerular basement membranes and purified by ion-exchange chromatography. The proteogycan was characterized by specific enzymatic digestions, by amino-acid analysis, by SDS-polyacrylamide gel electrophoresis and by density gradient centrifugation. Polyclonal antibodies were raised against the purified HSPG in rabbits. Antibodies were characterized by enzyme immunoassays, immunoprecipitation and immunohistological methods. They were shown to recognize specifically the core protein of HSPG from porcine, human and rat glomerular basement membrane but did not recognize HSPG from guinea pig or rabbit kidney. The affinity-purified antibodies did not cross-react with other basement membrane proteins like laminin, fibronectin or collagen type IV nor with chondroitin sulfate-rich or keratan sulfate-rich proteoglycans from human or bovine tissue. Using these antibodies an enzyme immunoassay was developed for determination of HSPG in the range of 1-100 ng/ml. Studies with cultured porcine endothelial cells showed that subendothelial basement membrane-associated HSPG may be determined with the enzyme immunoassay.  相似文献   

3.
A novel heparan sulfate proteoglycan (HSPG) present in the extracellular matrix of rat liver has been partially characterized. Proteoglycans were purified from a high salt extract of total microsomes from rat liver and found to consist predominantly (approximately 90%) of HSPG. A polyclonal antiserum raised against this fraction specifically recognized HSPG by immunoprecipitation and immunoblotting. The intact, fully glycosylated HSPG migrated as a broad smear (150-300 kD) by SDS-PAGE, but after deglycosylation with trifluoromethanesulfonic acid only a single approximately 40-kD band was seen. By immunocytochemistry this HSPG was localized in the perisinusoidal space of Disse associated with irregular clumps of basement membrane-like extracellular matrix material, some of which was closely associated with the hepatocyte sinusoidal cell surface. It was also localized in biosynthetic compartments (rough ER and Golgi cisternae) of hepatocytes, suggesting that this HSPG is synthesized and deposited in the space of Disse by the hepatocyte. The anti-liver HSPG IgG also stained basement membranes of hepatic blood vessels and bile ducts as well as those of kidney and several other organs (heart, pancreas, and intestine). An antibody that recognizes the basement membrane HSPG found in the rat glomerular basement membrane did not precipitate the 150-300-kD rat liver HSPG. We conclude that the liver sinusoidal space of Disse contains a novel population of HSPG that differs in its overall size, its distribution and in the size of its core protein from other HSPG (i.e., membrane-intercalated HSPG) previously described in rat liver. It also differs in its core protein size from HSPG purified from other extracellular matrix sources. This population of HSPG appears to be a member of the basement membrane HSPG family.  相似文献   

4.
A heparan sulfate proteoglycan (HSPG) synthesized by murine parietal yolk sac (PYS-2) cells has been characterized and purified from culture supernatants. A monospecific polyclonal antiserum was raised against it which showed activity against the HSPG core protein and basement membrane specificity in immunohistochemical studies on frozen tissue sections from many rat organs. However, there was no reactivity with some basement membranes, notably those of several smooth muscle types and cardiac muscle. In addition, it was found that pancreatic acinar basement membranes also lacked the HSPG type recognized by this antiserum. Those basement membranes that lacked the HSPG strongly stained with antisera against laminin and type IV collagen. The striking distribution pattern is possibly indicative of multiple species of basement membrane HSPGs of which one type is recognized by this antiserum. Further evidence for multiple HSPGs was derived from the finding that skeletal neuromuscular junction and liver epithelia also did not contain this type of HSPG, though previous reports have indicated the presence of HSPGs at these sites. The PYS-2 HSPG was shown to be antigenically related to the large, low buoyant density HSPG from the murine Engelbreth-Holm swarm tumor. It was, however, confirmed that only a single population of antibodies was present in the serum. Despite the presence of similar epitopes on these two proteoglycans of different hydrodynamic properties, it was apparent that the PYS-2 HSPG represents a basement membrane proteoglycan of distinct properties reflected in its restricted distribution in vivo.  相似文献   

5.
In an attempt to elucidate further the immunopathological pathways that underlie fibrogenesis induced by Schistosoma mansoni, we have studied the distribution of basement membrane compounds, heparan sulphate proteoglycans (HSPG) and the fibrogenic cytokine transforming growth factor (TGF)-β in two models of experimental schistosomiasis mansoni (experimental murine infection and synchronous granulomas induced by injection of egg-antigen-coupled beads into the caecal vein). Deposition of the basement membrane proteins type IV collagen, laminin and entactin in schistosomal granulomas was seen 3 days after the implantation of egg-antigen-coupled beads in the liver and persisted over time (32 days). Up-regulation of the membrane-bound HSPG syndecan-1 was observed in the schistosomal granuloma. These syndecan-1-immunoreactive cells represented a distinct subpopulation of granuloma cells; they were different from both mature, unstimulated B-cells (CD40-positive) and endothelial cells (CD105-positive). Deposition of the matrix HSPG perlecan within the granuloma was most prominent 8–16 days after injection. TGF-β expression was observed in acute (8 weeks) and chronically (13 weeks) infected mice, mainly at the periphery of the schistosomal granuloma and on Kupffer cells in the liver parenchyma. From these observations, we infer that schistosomal fibrosis is composed of various groups of matrix components and that TGF-β, which is secreted by granuloma cells, is one of the fibrogenic mediators in schistosomal fibrogenesis.  相似文献   

6.
Role of perlecan in skeletal development and diseases   总被引:4,自引:0,他引:4  
Perlecan, a large heparan sulfate proteoglycan (HSPG), is present in the basement membrane and other extracellular matrices. Its protein core is 400 kDa in size and consists of five distinct structural domains. A number of in vitro studies suggest multiple functions of perlecan in cell growth and differentiation and tissue organization. Recent studies with gene knockout mice and human diseases revealed critical in vivo roles of perlecan in cartilage development and neuromuscular junction activity. Published in 2003.  相似文献   

7.
In egg-laying species, such as the chicken, the mode of transport of lipoprotein particles from the capillary plasma to endocytic receptors on the oocyte surface is largely unknown. Here we show by molecular characterization that the large prominent heparan sulfate proteoglycan of extracellular matrices, termed perlecan or HSPG2 (the product of the hspg2 gene), is a component of ovarian follicles that may participate in this process. However, although normally a major HSPG of basement membranes or basal laminae, in chicken follicles, perlecan is absent from the membranous structure between the theca interna and granulosa cell layers, which to date has been considered a bona fide basement membrane. Rather, the protein is localized in the extracellular matrix of theca externa cells, which produce this HSPG. Furthermore, in chicken testes, perlecan is localized in the peritubular spaces but in less organized fashion than the classical basement membrane components, agrin and laminin. All five domains and structural hallmarks of chicken perlecan (4071 residues) have been conserved in its mammalian counterparts. We have produced the recombinant domain II (containing low density lipoprotein (LDL) receptor-like binding repeats) of chicken perlecan and demonstrate its capacity to bind LDL and very low density lipoprotein (VLDL), apolipoprotein B-containing lipoproteins ultimately destined for uptake into oocytes via members of the low density lipoprotein receptor family. Binding to perlecan heparan sulfate side chains may facilitate the interaction of lipoproteins with domain II. Based on the current results and on domain-domain interactions revealed by recent ultrastructural investigations of the LDL receptor, nidogen, and laminin (Rudenko, G., Henry, L., Henderson, K., Ichtchenko, K., Brown, M. S., Goldstein, J. L., and Deisenhofer, J. (2002) Science 298, 2353-2358 and Takagi, J., Yang, Y., Liu, J. H., Wang, J. H., and Springer, T. A. (2003) Nature 424, 969-974), we propose a novel role of perlecan in mediating plasma-to-oocyte surface transport of VLDL particles.  相似文献   

8.
During cementogenesis, dental follicular cells penetrate the ruptured Hertwig's epithelial root sheath (HERS) and differentiate into cementoblasts. Mechanisms involved in basement membrane degradation during this process have not been clarified. Perlecan, a heparan sulfate (HS) proteoglycan, is a component of all basement membranes. Degradation of HS of perlecan by heparanase cleavage affects a variety of biological processes. We elucidated immunolocalization of perlecan and heparanase in developing murine molars to clarify their roles in cementoblast differentiation. At the initial stage of root formation, perlecan immunoreactivity was detected on the basement membrane of HERS. Weak heparanase immunoreactivity was detected in HERS cells. HERS showed intense staining for heparanase as root formation progressed. In contrast, labeling for perlecan disappeared from the basement membrane facing the dental follicle, and weak immunoreactivity for perlecan was detected on the inner side of the basement membrane of HERS. These findings suggest that perlecan removal is an important step for root and periodontal tissue formation. Heparanase secreted by the cells of HERS may contribute to root formation by degrading perlecan in the dental basement membrane.  相似文献   

9.
《The Journal of cell biology》1989,109(4):1837-1848
The deposition of intestinal heparan sulfate proteoglycan (HSPG) at the epithelial-mesenchymal interface and its cellular source have been studied by immunocytochemistry at various developmental stages and in rat/chick interspecies hybrid intestines. Polyclonal heparan sulfate antibodies were produced by immunizing rabbits with HSPG purified from the Engelbreth-Holm-Swarm mouse tumor; these antibodies stained rat intestinal basement membranes. A monoclonal antibody (mAb 4C1) produced against lens capsule of 11-d-old chick embryo reacted with embryonic or adult chick basement membranes, but did not stain that of rat tissues. Immunoprecipitation experiments indicated that mAb 4C1 recognized the chicken basement membrane HSPG. Immunofluorescent staining with these antibodies allowed us to demonstrate that distribution of HSPG at the epithelial-mesenchymal interface varied with the stages of intestinal development, suggesting that remodeling of this proteoglycan is essential for regulating cell behavior during morphogenesis. The immunofluorescence pattern obtained with the two species-specific HSPG antibodies in rat/chick epithelial/mesenchymal hybrid intestines developed as grafts (into the coelomic cavity of chick embryos or under the kidney capsule of adult mice) led to the conclusion that HSPG molecules located in the basement membrane of the developing intestine were produced exclusively by the epithelial cells. These data emphasize the notion already gained from previous studies, in which type IV collagen has been shown to be produced by mesenchymal cells (Simon- Assmann, P., F. Bouziges, C. Arnold, K. Haffen, and M. Kedinger. 1988. Development (Camb.). 102:339-347), that epithelial-mesenchymal interactions play an important role in the formation of a complete basement membrane.  相似文献   

10.
Extraction of rat glomerular basement membrane, purified by osmotic lysis and sequential detergent treatment, with 8 M urea containing protease inhibitors solubilizes protein that is devoid of hydroxyproline and hydroxylysine. This material represents 8–12% of total membrane protein, elutes mainly as two high molecular weight peaks on agarose gel filtration, and is associated with glycosaminoglycans. Isolated rat renal glomeruli incorporate [35S]sulfate into basement membrane from which this non-collagenous 35S-labeled fraction can be subsequently solubilized. The radioactivity incorporated into urea-soluble glomerular basement membrane eluted primarily with the higher molecular weight peak (Mr greater than 250 000). Cellulose acetate electrophoresis after pronase digestion of the urea-soluble fraction revealed glycosaminoglycan that was resistant to digestion with Streptomyces hyaluronidase and chondroitinase ABC, sensitive to nitrous acid treatment, and contained [35S]-sulfate. The findings indicate that one of the non-collagenous components of glomerular basement membrane is a proteoglycan containing heparan sulfate.  相似文献   

11.
Cerebral amyloid angiopathy (CAA) is a major feature of Alzheimer's disease pathology. In CAA, degeneration of vascular smooth muscle cells (VSMCs) occurs close to regions of the basement membrane where the amyloid protein (Abeta) builds up. In this study, the possibility that Abeta disrupts adhesive interactions between VSMCs and the basement membrane was examined. VSMCs were cultured on a commercial basement membrane substrate (Matrigel). The presence of Abeta in the Matrigel decreased cell-substrate adhesion and cell viability. Full-length oligomeric Abeta was required for the effect, as N- and C-terminally truncated peptide analogues did not inhibit adhesion. Abeta that was fluorescently labelled at the N-terminus (fluo-Abeta) bound to Matrigel as well as to the basement membrane heparan sulfate proteoglycan (HSPG) perlecan and laminin. Adhesion of VSMCs to perlecan or laminin was decreased by Abeta. As perlecan influences VSMC viability through the extracellular signal-regulated kinase (ERK)1/2 signalling pathway, the effect of Abeta1-40 on ERK1/2 phosphorylation was examined. The level of phospho-ERK1/2 was decreased in cells following Abeta treatment. An inhibitor of ERK1/2 phosphorylation enhanced the effect of Abeta on cell adhesion. The studies suggest that Abeta can decrease VSMC viability by disrupting VSMC-extracellular matrix (ECM) adhesion.  相似文献   

12.
13.
Perlecan, a large heparan sulfate proteoglycan, is a component of the basement membrane and other extracellular matrices and has been implicated in multiple biological functions. Mutations in the perlecan gene (HSPG2) cause two classes of skeletal disorders: the relatively mild Schwartz-Jampel syndrome (SJS) and severe neonatal lethal dyssegmental dysplasia, Silverman-Handmaker type (DDSH). SJS is an autosomal recessive skeletal dysplasia characterized by varying degrees of myotonia and chondrodysplasia, and patients with SJS survive. The molecular mechanism underlying the chondrodystrophic myotonia phenotype of SJS is unknown. In the present report, we identify five different mutations that resulted in various forms of perlecan in three unrelated patients with SJS. Heterozygous mutations in two patients with SJS either produced truncated perlecan that lacked domain V or significantly reduced levels of wild-type perlecan. The third patient had a homozygous 7-kb deletion that resulted in reduced amounts of nearly full-length perlecan. Unlike DDSH, the SJS mutations result in different forms of perlecan in reduced levels that are secreted to the extracellular matrix and are likely partially functional. These findings suggest that perlecan has an important role in neuromuscular function and cartilage formation, and they define the molecular basis involved in the difference in the phenotypic severity between DDSH and SJS.  相似文献   

14.
Localization of proteoheparan sulfate in rat aorta   总被引:3,自引:0,他引:3  
This study describes the distribution of heparan sulfate proteoglycan ( HSPG ) within the rat aorta using immunocytochemical (biotin-avidin-peroxidase) and immuno-electron microscopy (125I-autoradiography). Heparan sulfate proteoglycan was isolated from a basement membrane producing mouse EHS sarcoma ( Hassell et al. 1980) and used to generate antisera in rabbits. Light microscopic observations revealed intense immunostaining of the intima and media of normal aorta, adventitial vasa vasorum, and aortic intimal fibromuscular thickenings induced by experimental injury (balloon de-endothelialization). Immunoelectron microscopy using 125I labeled antibodies to HSPG revealed that proteoheparan sulfate was localized to the amorphous layer of basement membrane below aortic and capillary endothelium. In addition, labeled anti- HSPG could be localized to the external lamina surrounding the smooth muscle cells in the hyperplastic intima. These studies reveal that antibodies prepared against a proteoheparan sulfate isolated from a basement membrane producing EHS sarcoma cross react with basement membrane structures within the aortic wall. Furthermore, these results demonstrate that the basement membranes beneath aortic and capillary endothelium and the external lamina surrounding aortic smooth muscle cells contain a heparan sulfate proteoglycan that is antigenically similar.  相似文献   

15.
Human basement membrane heparan sulfate proteoglycan (HSPG) perlecan binds and activates fibroblast growth factor (FGF)-2 through its heparan sulfate (HS) chains. Here we show that perlecans immunopurified from three cellular sources possess different HS structures and subsequently different FGF-2 binding and activating capabilities. Perlecan isolated from human umbilical arterial endothelial cells (HUAEC) and a continuous endothelial cell line (C11 STH) bound similar amounts of FGF-2 either alone or complexed with FGFRalpha1-IIIc or FGFR3alpha-IIIc. Both perlecans stimulated the growth of BaF3 cell lines expressing FGFR1b/c; however, only HUAEC perlecan stimulated those cells expressing FGFR3c, suggesting that the source of perlecan confers FGF and FGFR binding specificity. Despite these differences in FGF-2 activation, the level of 2-O- and 6-O-sulfation was similar for both perlecans. Interestingly, perlecan isolated from a colon carcinoma cell line that was capable of binding FGF-2 was incapable of activating any BaF3 cell line unless the HS was removed from the protein core. The HS chains also exhibited greater bioactivity after digestion with heparinase III. Collectively, these data clearly demonstrate that the bioactivity of HS decorating a single PG is dependent on its cell source and that subtle changes in structure including secondary interactions have a profound effect on biological activity.  相似文献   

16.
The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane. The glomerular basement membrane [35S]heparan sulfate proteoglycans, identified by immunoprecipitation, have a very rapid turnover with an initial phase, t1/2 = 5 h, and a later phase t1/2 = 20 h.  相似文献   

17.
The major macromolecules of basement membranes-collagen IV, laminin-1, and heparan sulfate proteoglycan (HSPG)-have been analyzed by atomic force microscopy (AFM), both individually and in combination with each other. The positions of laminin binding to collagen IV were mapped and compared with the positions of imperfections in the amino acid sequence of collagen IV; the apparent molecular volumes of the HSPG proteoglycans were measured and used to estimate the corresponding molecular weights. Even the thin, thread-like strands of the polyanion heparan sulfate can be visualized with AFM without staining, coating, or fixation. These strands are single polysaccharide chains and are thus thinner than single-stranded DNA. The heparan sulfate strands in HSPG are necessary for protein filtration in kidney basement membranes. We propose that these thin strands filter proteins by functioning as an entropic brush-i.e., that they filter proteins by their constant thermally driven motion in the basement membrane. These AFM analyses in air are a step toward AFM analyses under fluid of basement membrane macromolecules interacting with each other.  相似文献   

18.
Summary This study describes the distribution of heparan sulfate proteoglycan (HSPG) within the rat aorta using immunocytochemical (biotin-avidin-peroxidase) and immunoelectron microscopy (125I-autoradiography). Heparan sulfate proteoglycan was isolated from a basement membrane producing mouse EHS sarcoma (Hassell et al. 1980) and used to generate antisera in rabbits. Light microscopic observations revealed intense immunostaining of the intima and media of normal aorta, adventitial vasa vasorum, and aortic intimal fibromuscular thickenings induced by experimental injury (balloon de-endothelialization). Immunoelectron microscopy using 125I labeled antibodies to HSPG revealed that proteoheparan sulfate was localized to the amorphous layer of basement membrane below aortic and capillary endothelium. In addition, labeled anti-HSPG could be localized to the external lamina surrounding the smooth muscle cells in the hyperplastic intima. These studies reveal that antibodies prepared against a proteoheparan sulfate isolated from a basement membrane producting EHS sarcoma cross react with basement membrane structures within the aortic wall. Furthermore, these results demonstrate that the basement membranes beneath aortic and capillary endothelium and the external lamina surrounding aortic smooth muscle cells contain a heparan sulfate proteoglycan that is antigenically similar.  相似文献   

19.
硫酸乙酰肝素蛋白聚糖的功能机制研究进展   总被引:1,自引:0,他引:1  
邱宏  丁侃 《生命科学》2011,(7):648-661
硫酸乙酰肝素蛋白聚糖是由核心蛋白和与之相连的硫酸乙酰肝素糖链组成,广泛分布于细胞膜与细胞外基质中。其中多配体蛋白聚糖(syndecan)和糖基磷脂酰肌醇锚定蛋白聚糖(glypican)存在与细胞膜上,而串珠蛋白聚糖(perlecan)和组合蛋白聚糖(agrin)表达在细胞外基质中。该类蛋白在生理与病理历程中,如发育、伤口愈合、肿瘤发生发展、感染、免疫应答等过程中担任重要作用,这些功能是其核心蛋白和糖链共同作用的结果。概述硫酸乙酰肝素蛋白聚糖的功能及其机制研究进展,同时强调其在作为药物靶标和临床诊断研究中的应用。  相似文献   

20.
Heparanase (HPSE-1) is involved in the degradation of both cell-surface and extracellular matrix (ECM) heparan sulfate (HS) in normal and neoplastic tissues. Degradation of heparan sulfate proteoglycans (HSPG) in mammalian cells is dependent upon the enzymatic activity of HPSE-1, an endo-beta-d-glucuronidase, which cleaves HS using a specific endoglycosidic hydrolysis rather than an eliminase type of action. Elevated HPSE-1 levels are associated with metastatic cancers, directly implicating HPSE-1 in tumor progression. The mechanism of HPSE-1 action to promote tumor progression may involve multiple substrates because HS is present on both cell-surface and ECM proteoglycans. However, the specific targets of HPSE-1 action are not known. Of particular interest is the relationship between HPSE-1 and HSPG, known for their involvement in tumor progression. Syndecan-1, an HSPG, is ubiquitously expressed at the cell surface, and its role in cancer progression may depend upon its degradation. Conversely, another HSPG, perlecan, is an important component of basement membranes and ECM, which can promote invasive behavior. Down-regulation of perlecan expression suppresses the invasive behavior of neoplastic cells in vitro and inhibits tumor growth and angiogenesis in vivo. In this work we demonstrate the following. 1) HPSE-1 cleaves HS present on the cell surface of metastatic melanoma cells. 2) HPSE-1 specifically degrades HS chains of purified syndecan-1 or perlecan HS. 3) Syndecan-1 does not directly inhibit HPSE-1 enzymatic activity. 4) The presence of exogenous syndecan-1 inhibits HPSE-1-mediated invasive behavior of melanoma cells by in vitro chemoinvasion assays. 5) Inhibition of HPSE-1-induced invasion requires syndecan-1 HS chains. These results demonstrate that cell-surface syndecan-1 and ECM perlecan are degradative targets of HPSE-1, and syndecan-1 regulates HPSE-1 biological activity. This suggest that expression of syndecan-1 on the melanoma cell surface and its degradation by HPSE-1 are important determinants in the control of tumor cell invasion and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号