首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Maternal hypercholesterolemia (HC) during pregnancy and gestational diabetes mellitus (GDM) are associated with disturbance of fetal development which may also modify key features of placental functions. In this study, we evaluated the impact of maternal hypercholesterolemia on placental cholesterol and lipid metabolism in 59 women classified in two groups according to the median concentration of plasma total cholesterol (6.42 mM). The impact of GDM was also evaluated on the metabolism of placentas obtained from 7 insulin-treated GDM and 7 non-GDM women. We showed that high maternal circulating cholesterol is associated with a significant increase in the LDL-cholesterol, ApoB-100 and triglyceride concentrations in the maternal blood. However the level of cholesterol in the venous cord blood and placenta remains unchanged in response to modification in maternal cholesterol profile. The levels of Fatty acid synthase (FAS) and SREBP-2 expressions in placenta are significantly increased in the HC group while expression of both sterol regulatory element-binding proteins-1 (SREBP-1) and HMG-CoA reductase (HMGR) are not modified. GDM is not associated with modification in the maternal lipid profile but it increases the concentration of inflammatory cytokines (IL-1beta and TNF-alpha) in placenta which correlates with a dramatic induction of FAS expression without affecting the expression of mature SREBPs proteins. In conclusion, our study suggests that in placenta, expressions of key proteins involved in de novo lipid synthesis are affected by changes in maternal metabolism (HC and GDM) that may subsequently affect fetal development.  相似文献   

2.
An appropriate cholesterol homeostasis is vital for the maintenance and the optimal fetal development. The cholesterol is essential for the synthesis of progesterone and 17beta-estradiol, hormones that actively participate to sustain gestation. However, the administration of 0.2% enriched cholesterol diet (ECD) during rabbit gestation significantly increased the cholesterol blood profile (total-cholesterol, LDL, HDL, esterified-cholesterol and free-cholesterol) of dams and offspring, and induced a reduction of the offspring weight of 15% as compared to the control group. Enzymes involved in cholesterol metabolism (ACAT, HMG-CoA-reductase and cholesterol-7alpha-hydroxylase) are greatly influenced by cholesterol profile. We hypothesized that the administration of an ECD during rabbit gestation modifies the activity of those enzymes. Female rabbits (pregnant or not) were fed with a standard diet or an ECD. At term, livers (dams and offspring) and placentas were collected and ACAT, HMG-CoA-reductase and cholesterol-7alpha-hydroxylase activities were assayed. Our results demonstrate that gestation induced a reduction of ACAT activity (48.9%) in dam's liver and, an augmentation of HMG-CoA-reductase activity (142.4%) whereas it has no effect on cholesterol-7alpha-hydroxylase activity. The administration of the ECD has no additive effect on ACAT, but significantly reduced the HMG-CoA-reductase activity and cholesterol-7alpha-hydroxylase activity as compared with the pregnant control group. In placentas the ECD supplementation has an influence for HMG-CoA-reductase activity, where a 43% increased in observed. Any ACAT activity was detected in placenta and the ECD has no influence on the cholesterol-7alpha-hydroxylase activity. Whereas their offspring's liver present a reduction of ACAT and HMG-CoA-reductase activity. Gestation associated with ECD reduces significantly the HMG-CoA-reductase activity, decreasing the cholesterol synthesis, but placenta seems to compensate this effect by increasing its HMG-CoA-reductase activity.  相似文献   

3.
The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only marginally in fetal livers, fetal bodies, placentas, and yolk sacs when cholesterol concentrations were increased. To begin to elucidate the mechanism responsible for the blunted response of sterol synthesis rates in fetal tissues to exogenous cholesterol, the ratio of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) to Insig-1 was measured in these same tissues since the ratio of SCAP to the Insigs can impact SREBP processing. The fetal tissues had anywhere from a 2- to 6-fold greater ratio of SCAP to Insig-1 than did the adult liver, suggesting constitutive processing of the SREBPs. As expected, the level of mature, nuclear SREBP-2 was not different in the fetal tissues with different levels of cholesterol whereas it was different in adult livers. These findings indicate that the suppression of sterol synthesis to exogenous sterol is blunted in developing tissues and the lack of response appears to be mediated at least partly through relative levels of Insigs and SCAP.  相似文献   

4.
5.
6.
Montoudis A  Simoneau L  Lafond J 《Life sciences》2004,74(14):1751-1762
Fetal development requires an important entry of essential free fatty acids (EFFA) and essential amino acids (EAA) into the fetal circulation. We have reported that a 0.2% enriched-cholesterol diet (ECD) during rabbit gestation significantly reduces fetus weight compared to control diet. It is known that dietary linoleic acid deficiency, an EFFA, during the fetal development induces an important impair to the somatic development. Moreover, intrauterine growth retardation induced a reduction of the flux of leucine, an EAA, from maternal to fetal circulation. Therefore, we hypothesized that the administration of an ECD induces modifications of placental lipid composition concomitant alterations of the transfer of linoleic acid and leucine in fetal circulation. Quantification of placental lipids revealed that in the ECD group a reduction of total-cholesterol (TC) and free-cholesterol (FC) is observed, however an increased in FFA and phospholipids is noticed when compared to the control group. In placenta from the ECD group, the FC/ TC ratio is significantly reduced compared to the control group. In the ECD group, the liver shows an increase of TC, FC and FFA compared to the control group. However, the quantity of triacylglycerol present in the liver from the ECD is significantly reduced compared to the control group. To evaluate the placental transfer of some essential nutrients, intravenous injection of [1-14C]-linoleic acid or L-[4, 5-3H]-leucine to term rabbit (control and ECD group) were done. Two hours later, rabbits were euthanized and we collected placenta, livers and blood from dams and offspring. The concentrations of both radiolabeled molecules (linoleic acid and its esterified form or leucine) were higher in the plasma of ECD offspring than those found in offspring from control diet. Despite such alteration of placental lipid composition, linoleic acid and leucine transfer by the placenta was not compromised but rather increased.  相似文献   

7.
8.
Resveratrol (3,5,4-trihydroxystilbene) is a natural polyphenolic compound found in grapes and red wine and has been shown to exert protective effects on the liver preventing lipid accumulation induced by a high-fat diet. However, no studies have shown that the nutritional resveratrol intake by the parental generation has modified lipogenesis in an adult offspring. The aim of this study was to investigate whether maternal resveratrol intake during lactation affects lipogenesis in adult male rat offspring, and if it does, what is the molecular mechanistic basis. Six male pups born from mothers given a control diets during lactation (CC group) and six male pups born from mothers given a control diet as well as resveratrol during lactation (CR group) were fed a standard diet until sacrifice at 36 weeks. Adult male offspring from mothers given resveratrol during lactation (CR group) had lower body weight from the fourth week of lactation until adulthood, but no significant change was observed in the relative food intake. Low levels of plasma triacylglycerol were found in the CR group compared to the CC group. Histopathological analysis of the livers of adult male rat offspring revealed lipid accumulation in hepatocytes in the CC group, whereas lipid droplets were rare in the CR group. Hepatic protein levels of AMPK-phosphorylated at ser403, Sirt1, and Nampt in the CR group were upregulated significantly compared to the CC group. These results indicated the maternal resveratrol intake during lactation-induced activation of AMPK through Sirt1 upregulation. In this study, significant upregulation of the levels of precursor of sterol regulatory element binding protein-1c (SREBP-1c) and downregulation of the ratio of active-SREBP-1c/precusor-SREBP-1c were observed in the CR group compared to the CC group. These results suggested that proteolytic processing of SREBP-1c was suppressed by AMPK in the livers of the CR group. It is well known that SREBP-1c regulates the lipogenic pathway by activating genes involved in triglyceride and fatty acid synthesis. The present study showed significant downregulation of hepatic fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) levels in the CR group. These results indicated that maternal resveratrol intake during lactation suppressed SREBP-1c cleavage and nuclear translocation and repressed SREBP-1c target gene expression such as FAS and ACC in the livers of adult male offspring. These changes attenuate hepatic triacylglycerol and fatty acid synthesis in adult male offspring.  相似文献   

9.
We previously reported that trisomy 21 (T21) fetuses have an intrinsic lipid metabolism abnormality resulting in higher serum cholesterol levels than their matched controls. In an attempt to clarify the biochemical basis of this derangement we analyzed the liver cholesterol levels and activation of the sterol regulatory element binding proteins SREBP-1 and SREBP-2. We report here for the first time that SREBP-1 and SREBP-2 are present in human fetal liver and their activation follows a different regulatory pattern. Moreover T21 fetuses show a peculiar pattern of SREBP activation which, at variance from control fetuses, involves sterol-independent maturation of SREBP-1. Multiple defects accompanied the lipid derangement in T21, resulting in high circulating and tissue cholesterol. This may serve as an early biochemical marker of an unknown, possibly genetically determined mechanism, whose consequence on lipid homeostasis during postnatal and adult life is still not understood.  相似文献   

10.
Maternal dietary Fe restriction reduced fasting plasma cholesterol and triglyceride (TG) concentrations in the fetuses, as well as decreased plasma TG levels in the adult offspring. To investigate how maternal Fe restriction was affecting fetal lipid metabolism, we investigated whether there were changes in liver lipid metabolism in the full-term fetuses. There was a approximately 27% (P < 0.05) increase in cholesterol but approximately 29% reduction (P = 0.01) in TG concentrations in the liver of the Fe-restricted fetuses. Hepatic mRNA levels of cholesterol 7alpha hydroxylase and liver X receptor-alpha (LXRalpha) were reduced by approximately 50% (P < 0.01) and approximately 34% (P < 0.01), respectively. As LXRalpha regulates expression of sterol response element binding protein-1c (SREBP-1c) expression, we measured SREBP-1c expression. There was an approximately 43% (P < 0.001) reduction in mRNA levels of SREBP-1c and its response genes, including acetyl-CoA carboxylase by approximately 35% (P = 0.01), fatty acid synthase by approximately 18% (P = 0.05), and diacylglycerol acyltransferase by approximately 19% (P = 0.03). Furthermore, protein levels of CD36 were reduced by approximately 27% (P = 0.02) in Fe-restricted fetuses. In conclusion, changes in liver cholesterol and TG concentrations in Fe-restricted fetuses may be coordinated through reduced expression of heme-containing cholesterol 7alpha hydroxylase and its regulator LXRalpha, mainly via downregulation of expression of genes in bile acid synthesis and fatty acid synthesis pathways.  相似文献   

11.
Although the importance of methyl metabolism in fetal development is well recognized, there is limited information on the dynamics of methionine flow through maternal and fetal tissues and on how this is related to circulating total homocysteine concentrations. Rates of homocysteine remethylation in maternal and fetal tissues on days 11, 19, and 21 of gestation were measured in pregnant rats fed diets with limiting or surplus amounts of folic acid and choline at two levels of methionine and then infused with L-[1-(13)C,(2)H(3)-methyl]methionine. The rate of homocysteine remethylation was highest in maternal liver and declined as gestation progressed. Diets deficient in folic acid and choline reduced the production of methionine from homocysteine in maternal liver only in the animals fed a methionine-limited diet. Throughout gestation, the pancreas exported homocysteine for methylation within other tissues. Little or no methionine cycle activity was detected in the placenta at days 19 and 21 of gestation, but, during this period, fetal tissues, especially the liver, synthesized methionine from homocysteine. Greater enrichment of homocysteine in maternal plasma than placenta, even in animals fed the most-deficient diets, shows that the placenta did not contribute homocysteine to maternal plasma. Methionine synthesis from homocysteine in fetal tissues was maintained or increased when the dams were fed folate- and choline-deficient methionine-restricted diets. This study shows that methyl-deficient diets decrease the remethylation of homocysteine within maternal tissues but that these rates are protected to some extent within fetal tissues.  相似文献   

12.
In a rat model of gestational diabetes mellitus (GDM) programmed in the offspring of neonatal streptozotocin-induced (nSTZ) diabetic rats, lipids are accumulated in the fetal liver in a sex-dependent way. Here, we evaluated whether maternal diets enriched in olive oil in rats that will develop GDM ameliorate lipid metabolic impairments in the fetal livers. Pregnant offspring of control and nSTZ diabetic rats (F0) were fed a 6% olive oil-supplemented diet throughout the F1 gestation. We evaluated maternal metabolic parameters as well as lipid content, expression of lipid metabolizing enzymes and protein expression of PLIN2, PPARs and PPAR coactivators in the fetal livers. The offspring of nSTZ diabetic rats developed GDM regardless of the maternal treatment. Hypertriglyceridemia in GDM rats was prevented by the olive oil-enriched maternal treatment. In the livers of male fetuses of GDM rats, the maternal olive oil-supplemented diet prevented lipid overaccumulation and prevented the increase in PPARγ and PPARδ levels. In the livers of female fetuses of GDM rats, the maternal olive oil supplementation prevented the increase in PPARδ levels and the reduction in PGC1α levels, but did not prevent the reduced lipid content. Control and GDM rats showed a reduction of lipid metabolic enzymes in the fetal livers, which was associated with reduced levels of the PPAR coactivators PGC-1α and SRC-1 in males and of SRC-1 in females. These results suggest powerful effects of a maternal olive oil-supplemented diet in the fetal liver, possibly providing benefits in the fetuses and offspring from GDM rats.  相似文献   

13.
Studies to determine the effects of pre-natal interventions on maternal and fetal cholesterol homeostasis were carried out in the guinea pig. Guinea pig dams were fed either non-purified guinea pig diet or diet supplemented with either 1.1% of the bile acid binding resin cholestyramine or 0.25% cholesterol. Whole body rates of endogenous cholesterol synthesis were determined by quantitation of [3H]water incorporation into digitonin precipitable sterols in non-pregnant animals and at 40 and 60 days of gestation in the dam and fetus. Maternal hepatic cholesterol synthesis was reduced 87% by dietary cholesterol and was increased 3.5-fold with cholestyramine feeding. Fetal hepatic and peripheral tissue cholesterol synthesis rates peaked at 40 days gestation when peripheral tissue cholesterol synthesis was 5.7-fold higher and hepatic synthesis 6.2-fold greater than the near adult levels observed at 60 days. Cholesterol synthesis in the fetus was relatively insensitive to dietary manipulations; however, maternal cholestyramine treatment did result in a 1.4-fold increase in fetal carcass cholesterol synthesis at 60 days gestation. These data demonstrate that maternal cholesterogenic systems maintain responsiveness to dietary regulation during pregnancy; whereas fetal cholesterol homeostasis is relatively insensitive to dietary cholesterol throughout gestation yet may respond to induction by maternal cholestyramine treatment during the late gestation period.  相似文献   

14.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is considered to be one of the master regulators of adipocyte differentiation. PPARgamma2 is abundantly expressed in mature adipocytes and is elevated in the livers of animals that develop fatty livers. The aim of this study was to determine the ability of PPARgamma2 to induce lipid accumulation in hepatocytes and to delineate molecular mechanisms driving this process. The hepatic cell line AML-12 was used to generate a cell line stably expressing PPARgamma2. Oil Red O staining revealed that PPARgamma2 induces lipid accumulation in hepatocytes. This phenotype is accompanied by a selective upregulation of several adipogenic and lipogenic genes including adipose differentiation-related protein (ADRP), adipocyte fatty acid-binding protein 4, sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase, genes whose expression levels are known to increase in steatotic livers of ob/ob mice. Furthermore, the PPARgamma2-regulated induction of both SREBP-1 and FAS parallels an increase in de novo triacylglycerol synthesis in hepatocytes. Triacylglycerol synthesis and lipid accumulation are further enhanced by culturing hepatocytes with troglitazone in the absence of exogenous lipids. These results correspond with an increase in the lipid droplet protein, ADRP, and the data demonstrate that ADRP functions to coat lipid droplets in hepatocytes as observed by confocal microscopy. Taken together, these observations propose a role for PPARgamma2 as an inducer of steatosis in hepatocytes and suggest that this phenomenon occurs through an induction of pathways regulating de novo lipid synthesis.  相似文献   

15.
Pregnant rats were given pharmacological doses of cortisol or ACTH or no hormone from gestation day 9 to 19 and maternal and fetal hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and plasma cholesterol studied on gestation day 20. Reductase activity was also studied in the maternal and fetal adrenal of the rats given cortisol or no hormone. Cortisol administration increased the maternal and fetal plasma cholesterol but had no effect on the hepatic active (phosphorylated) 3-hydroxy-3-methylglutaryl-CoA reductase activity when compared to untreated rats. Total (active + inactive) 3-hydroxy-3-methylglutaryl-CoA reductase activity, however, was reduced in maternal liver but not altered in the fetal liver by cortisol. The maternal cortisol treatment decreased the fetal, but not maternal, adrenal 3-hydroxy-3-methylglutaryl-CoA reductase total enzyme activity. The data support a hypothesis that utilization of plasma cholesterol for adrenal steroidogenesis may be an important determinant of plasma cholesterol homeostasis in the rat fetus. Maternal ACTH administration increased the foetal but not maternal plasma cholesterol, whilst active 3-hydroxy-3-methylglutaryl-CoA reductase activity was increased in the pregnant rat but not her fetuses. This result may suggest coordination of hepatic active reductase activity with adrenal cholesterol utilization in the pregnant rat. The reason for the fetal hypercholesterolaemia caused by ACTH, which is not known to cross the placenta, is uncertain. The studies, however, indicate that fetal cholesterol homeostasis and the rate limiting enzyme of cholesterol synthesis is influenced by maternal glucocorticoid administration.  相似文献   

16.
Melatonin exists as an active ingredient in several foods and has been reported to inhibit fatty liver disease in animals; however, its molecular mechanisms are not well elucidated. Herein, we explored effects of melatonin on lipid accumulation induced by oleic acid in HepG2 cells and characterized the underlying molecular mechanisms. Pretreatment with melatonin (0.1–0.3?mM) significantly inhibited accumulation of triglyceride and cholesterol induced by incubating HepG2 cells with high concentrations of oleic acid (oleic acid overload) (p?<?0.05). Melatonin pretreatment induced phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), causing their activation and inactivation, respectively. Expression levels of peroxisome proliferator activated receptor-α (PPARα) and its target gene carnitine palmitoyl-CoA transferase 1 (CPT1), which are associated with lipolysis, were upregulated by melatonin, whereas expression of sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD1), which are associated with lipogenesis, were downregulated. Melatonin did not change expression of genes involved in cholesterol metabolism, including 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) and SREBP-2. Melatonin inhibits lipid accumulation induced by oleic acid overload in HepG2 cells. The phosphorylation and activation of AMPK may have important roles in inactivating lipid anabolic pathways and activating triglyceride catabolic pathways.  相似文献   

17.
Fatty acid synthase (FAS), a key lipogenic enzyme, is expressed in the two major sites of fatty acid production in the body, that is, the liver and the adipose tissue. Surprisingly, the relative contribution of these sites to lipogenesis is highly variable among species. For example, besides the situation in rodents, where liver and fat are equally active, lipogenesis in some mammals such as the pig occurs principally in adipose tissue, whereas in avian species, the liver is the main lipogenic site. We addressed the question concerning the factors determining the site of fatty acid synthesis. We show that the expression of adipocyte determination and differentiation-dependent factor 1/sterol regulatory element-binding protein (ADD-1/SREBP-1) mRNA, but not SREBP-2, is linked to FAS protein content or activity in adipose tissues and livers of pig, chicken, and rabbit. Tissue differences in ADD-1/SREBP-1 mRNA expression between species were paralleled by commensurate variations in the nuclear concentration of SREBP-1 protein. Moreover, overexpression of ADD-1/SREBP-1 by adenoviral gene transfer induces FAS in chicken adipocytes, where lipogenesis is normally low. Conversely, the expression of a dominant negative form of ADD-1/SREBP-1 in pig adipocytes downregulates FAS expression.These results reinforce the role of ADD-1/SREBP-1 as a key regulator of lipogenesis, by extending its importance to nonrodent mammals and birds. Furthermore, they establish that differential expression of ADD-1/SREBP-1 is a key determinant of the site of fatty acid synthesis in the body.-Gondret, F., P. Ferré, and I. Dugail. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J. Lipid Res. 2001. 42: 106;-113.  相似文献   

18.
Maternal hyperlipidemia is a characteristic feature during pregnancy, it has been reported that modification of the maternal lipid profile can induce disturbance during pregnancy. In this study, we evaluated the impact of maternal lipid profile on the placental protein expression of two major receptors in cholesterol metabolism, the low density lipoprotein receptor (LDLr) and the scavenger receptor type B1 (SR-B1). We demonstrate an increase in the level of maternal total circulating cholesterol leads to a significant decrease in the level of the LDLr protein expression, while the level of the SR-BI expression remains unchanged. A similar change, for LDLr, is observed in association with the maternal pre-pregnancy body mass index and weight gain. Our data suggest that the LDLr plays a role in regulating cholesterol delivered to the baby from the placenta.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号