首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co‐Co3O4/carbon nanotube/carbon foam (Co‐Co3O4/CNT/CF) nanocomposites were prepared by soaking melamine foam into a solution of Co(NO3)2·6H2O, followed by calcination in N2 and air in sequence. The obtained Co‐Co3O4/CNT/CF nanocomposites were characterized with scanning electron microscopy and cyclic voltammetry. It was found that Co3O4 nanoparticles were grown on the external of CF successfully, while CNTs were grown on the surfaces of CF in a large amount, which further improved the electrical conductivity of the. The prepared Co‐Co3O4/CNT/CF nanocomposites were then used to construct nonenzymatic sensor to detect glucose in alkaline solution. The sensor showed detection range from 1.2 μM to 2.29 mM with a detection limit of 0.4 μM (S/N =3) and a high sensitivity of 637.5 μA?1 cm?2. The developed sensor also showed an instant response, favorable reproducibility, and high selectivity. The results attest that Co‐Co3O4/CNT/CF composites have great potential in the development of nonenzymatic sensors for glucose.  相似文献   

2.
The capping of electron relay units in mesoporous carbon nanoparticles (MPC NPs) by crosslinking of different enzymes on MPC NPs matrices leads to integrated electrically contacted bienzyme electrodes acting as dual biosensors or as functional bienzyme anodes and cathodes for biofuel cells. The capping of ferrocene methanol and methylene blue in MPC NPs by the crosslinking of glucose oxidase (GOx) and horseradish peroxidase (HRP) yields a functional sensing electrode for both glucose and H2O2, which also acts as a bienzyme cascaded system for the indirect detection of glucose. A MPC NP matrix, loaded with ferrocene methanol and capped by GOx/lactate oxidase (LOx), is implemented for the oxidation and detection of both glucose and lactate. Similarly, MPC NPs, loaded with 2,2′‐azino‐bis(3‐ethylbenzo­thiazoline‐6‐sulphonic acid), are capped with bilirubin oxidase (BOD) and catalase (Cat), to yield a bienzyme O2 reduction cathode. A biofuel cell that uses the bienzyme GOx/LOx anode and the BOD/Cat cathode, glucose and/or lactate as fuels, and O2 and/or H2O2 as oxidizers is assembled, revealing a power efficiency of ≈90 μW cm?2 in the presence of the two fuels. The study demonstrates that multienzyme MPC NP electrodes may improve the performance of biofuel cells by oxidizing mixtures of fuels in biomass.  相似文献   

3.
The elucidation of factors that support human mesenchymal stem cells (hMSCs) growth has remained unresolved partly because of the reliance of many researchers on ill‐defined, proprietary medium formulation. Thus, we investigated the effects of high glucose (D ‐glucose, 25 mM) on hMSCs proliferation. High glucose significantly increased [3H]‐thymidine incorporation and cell‐cycle regulatory protein expression levels compared with 5 mM D ‐glucose or 25 mM L ‐glucose. In addition, high glucose increased transforming growth factor‐β1 (TGF‐β1) mRNA and protein expression levels. High glucose‐induced cell‐cycle regulatory protein expression levels and [3H]‐thymidine incorporation, which were inhibited by TGF‐β1 siRNA transfection and TGF‐β1 neutralizing antibody treatment. High glucose‐induced phosphorylation of protein kinase C (PKC), p44/42 mitogen‐activated protein kinases (MAPKs), p38 MAPK, Akt, and mammalian target of rapamycin (mTOR) in a time‐dependent manner. Pretreatment of PKC inhibitors (staurosporine, 10?6 M; bisindolylmaleimide I, 10?6 M), LY 294002 (PI3 kinase inhibitor, 10?6 M), Akt inhibitor (10?5 M), PD 98059 (p44/42 MAPKs inhibitor, 10?5 M), SB 203580 (p38 MAPK inhibitor, 10?6 M), and rapamycin (mTOR inhibitor, 10?8 M) blocked the high glucose‐induced cellular proliferation and TGF‐β1 protein expression. In conclusion, high glucose stimulated hMSCs proliferation through TGF‐β1 expression via Ca2+/PKC/MAPKs as well as PI3K/Akt/mTOR signal pathways. J. Cell. Physiol. 224:59–70, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Polydopamine (Pdop) has recently been shown to adsorb to a wide variety of surfaces and serves as an adhesion layer to immobilize biological molecules. In this work, the multifunctional carbon nanotube (CNT) composites were prepared though the oxidation of dopamine at room temperature and subsequent electroless silver deposition by mildly stirring. The stable immobilization and direct electron transfer of glucose oxidase were achieved on the composite film modified glassy carbon electrode. The resulting electrode gave a well-defined redox peaks with a formal potential of about −482 mV (vs. SCE) in pH 7.0 buffer. The electron transfer rate constant was estimated to be 3.6 s−1, due to the combined contribution of Pdop, CNTs and Ag nanoparticles with the help of Nafion. Furthermore, the method for detecting of glucose was proposed based on the decrease of oxygen caused by the enzyme-catalyzed reaction between glucose oxidase (GOD) and glucose. The linear response to glucose ranging from 50.0 μM to 1.1 mM (R2 = 0.9958), with a calculated detection limit of 17.0 μM at a signal-to-noise ratio of 3. The low calculated apparent Michaelis–Menten constant was 5.46 mM, implying the high enzymatic activity and affinity of immobilized GOD for glucose. It can reasonably be expected that this observation might hold true for other noble metal nanostructure-electroactive protein systems, providing a promising platform for the development of biosensors and biofuel cells.  相似文献   

5.
It has been previously shown that Walker 256 tumor cells express a high content of the anti-apoptotic protein Bcl-2 which protects mitochondria against the damaging effects of Ca2+. In the present study, we analyze H2O2-induced apoptotic death in two different types of tumor cells: Walker 256 and SCC-25. Treatment with H2O2 (4mM) increased reactive oxygen species generation and the concentration of cytosolic free Ca2+. These alterations preceded apoptosis in both cell lines. In Walker cells, which show a high Bcl-2/Bax ratio, apoptosis was dependent on calcineurin activation and independent of changes in mitochondrial membrane potential (Δ < eqid1 > m), as well as cytochrome c release. In contrast, in SCC-25 cells, which show a lower Bcl-2/Bax ratio, apoptosis was preceded by a decrease in Δ < eqid2 > m, mitochondrial permeability transition, and cytochrome c release. Caspase-3 activation occurred in both cell lines. The data suggest that although the high Bcl-2/Bax ratio protected the mitochondria of Walker cells from oxidative stress, it was not sufficient to prevent apoptosis through calcineurin pathways.  相似文献   

6.
As has been previously shown, Saccharomyces cerevisiae grown in 2% or 0.025% glucose uses this carbohydrate by the fermentative or oxidative pathways, respectively. Depending on the glucose concentration in the medium, the effect of the addition of H2O2 on the level of ATP and on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity differed. In the presence of 2% glucose, ATP and GAPDH decreased sharply during the first few minutes of treatment, whereas in the presence of 0.025% glucose, GAPDH activity decreased similarly, but the ATP level remained practically unchanged. The addition of 3 mM glutathione to the culture media prevented the depletion of ATP levels and GAPDH activity in the presence of H2O2. Catalase and superoxide dismutase activities did not vary significantly when yeast cells were grown either in 2% or in 0.025% glucose.  相似文献   

7.

Objective

To explore the glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.

Result

Overexpression of a glycerol facilitator, glycerol dehydrogenase and dihydroxyacetone kinase from Escherichia coli K-12 in C. glutamicum led to recombinant strains NC-3G diverting glycerol utilization towards succinate production under O2 deprivation. Under these conditions, strain NC-3G efficiently consumed glycerol and produced succinate without growth. The recombinant C. glutamicum utilizing glycerol as the sole carbon source showed higher intracellular NADH/NAD+ ratio compare with utilizing glucose. The mass conversion of succinate increased from 0.64 to 0.95. Using an anaerobic fed-batch fermentation process, the final strain produced 38.4 g succinate/l with an average yield of 1.02 g/g.

Conclusions

The metabolically-engineered strains showed an efficient succinate production using glycerol as sole carbon source under O2 deprivation.
  相似文献   

8.
The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are ?220.5 kJ mol?1 for Al/3NG-NO, ?111.9 kJ mol?1 for Al/3NG-NH3, and ?347.7 kJ mol?1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.  相似文献   

9.
In the present report we focused on the substitution of metallic catalysts by biocatalysts to develop a high efficient biofuel cell. A bioanode and a biocathode were designed using ADH and laccase, respectively. Carboxylated multiwall carbon nanotubes (HOOC-MWCNTs) and polydiallyldimethylammonium chloride (PDDA) were used for immobilizing the enzymes on either polymethylene green (PMG) modified glassy carbon or graphite electrodes. In this way, an ethanol–oxygen biofuel cell was designed in which PDDA/ADH/PDDA/HOOC-MWCNTs/PMG/GC and PDDA/Lac/PDDA/HOOC-MWCNTs/PMG/Gr operated as bioanode and biocathode, respectively. In the optimized condition of O2 saturated PBS (0.1 M, pH 7.5) containing 1 mM ethanol and 1 mM NAD+ the open-circuit voltage reached to a plateau at 504 mV based of which the power density of 3.98 mW cm−2 was obtained.  相似文献   

10.
With increasing industrialization, numerous air pollutants are generated. This research aimed to investigate the effects of inhalation of oxidative pollutants. H2O2 was used to simulate oxidative air pollutants, and glutathione, a reducing agent that is widely distributed in organisms, was used as an antagonist, to protect cells from oxidative stress. H2O2 was diluted using two gradients (0.05 mM, 0.20 mM, 0.80 mM, 3.20 mM and 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM) and GSH was dissolved at 20 μM. MTT, MDA, ROS, GSH, and TSLP were used as biomarkers to evaluate oxidative stress and possible resulting molecular events. A dose–response relationship was observed between H2O2 concentrations and the above-mentioned biomarkers. Glutathione significantly reduced levels of oxidative stress.  相似文献   

11.
Glucose oxidase (GOx) was immobilized onto glassy carbon electrode (GCE) that modified by reduced graphene oxide-gold nanoparticles- poly neutral red (RGO/AuNPs/PNR) nanocomposite. The composite was analyzed by scanning electron microscope (SEM), energy dispersive x-ray (EDX) spectroscopy, atomic force microscopy (AFM), attenuated total reflectance (ATR), cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). SEM/EDX analysis showed the morphological of the nanocomposite. AFM results showed the morphology and structure of the RGO/AuNPs and RGO surfaces. The covalent bonding between glucose oxidase and composite was confirmed by ATR technique. The electrochemical experiments were done in 100 mM phosphate buffer at pH 7 and temperature of 25 °C with three electrodes including Ag/AgCl, platinum wire and the modified GCE as the reference electrode, the auxiliary electrode and working electrode respectively. The electrochemical results confirmed the activity and direct electron transfer of immobilized enzyme. The immobilized electroactive GOx concentration was estimated 3.06 × 10−11 mol cm−2. The results showed the immobilized enzyme had a good stability and maintained 90% of its performance after two weeks. The nanocomposite bioanode in an air-birthing biofuel cell and 100 mM glucose concentration showed 176 μWcm−2 Power density. This strategy could be used for GOx-based biofuel cells.  相似文献   

12.
We report here for the first time on the fabrication of highly dispersed PtM (M = Ru, Pd and Au) nanoparticles on composite film of multi-walled carbon nanotubes (MWNTs)–ionic liquid (IL, i.e., trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide) by using ultrasonic-electrodeposition method. The PtM nanoparticles are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction, and we find that they are well-dispersed and exhibit alloy properties. Electrochemical experiments show that the PtRu(1:1, i.e., ratio of c(H2PtCl6)/c(RuCl3))–MWNT–IL nanocomposite modified glassy carbon electrode (PtRu(1:1)–MWNT–IL/GCE) has smaller electron transfer resistance and larger active surface area than PtRu(1:1)/GCE, PtRu(1:1)–MWNT/GCE, PtPd(1:1)–MWNT–IL/GCE and PtAu(1:1)–MWNT–IL/GCE. The PtRu(1:1)–MWNT–IL/GCE also presents stronger electrocatalytic activity toward the glucose oxidation than other electrodes. At −0.1 V, the electrode responds linearly to glucose up to 15 mM in neutral media, with a detection limit of 0.05 mM (S/N = 3) and detection sensitivity of 10.7 μA cm−2 mM−1. Meanwhile, the interference of ascorbic acid, uric acid, acetamidophenol and fructose is effectively avoided. The as-made sensor was applied to the determination of glucose in serum and urine samples. The results agreed closely with the results obtained by a hospital. This novel nonenzyme sensor thus has potential application in glucose detection.  相似文献   

13.
In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified by ordered mesoporous silica-SBA-15 and Nafion. The sorption behavior of GOD immobilized on SBA-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet–visible (UV–vis), FTIR, respectively, which demonstrated that SBA-15 can facilitate the electron exchange between the electroactive center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and SBA-15 matrices displays direct, nearly reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 3.89 s−1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the absence of O2, GOD immobilized on Nafion and SBA-15 matrices can produce a wide linear response to glucose in the positive potential range. Thus, Nafion/GOD-SBA-15/GC electrode is hopeful to be used in the third non-mediator's glucose biosensor. In addition, GOD immobilized on SBA-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O2. The Nafion/GOD-SBA-15/GC electrode can be utilized as the cathode in biofuel cell.  相似文献   

14.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

15.
The ability of Fe3O4 Fenton-like reaction to produce glucose from lignocellulosic biomass was investigated. Fe3O4 magnetite nanoparticles were chemically synthesized from iron salts (a mixture of 1 M FeCl2 and 2M FeCl3) using an ammonia solution (30% NH4OH). The synthesized Fe3O4 nanoparticles were further characterized by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. Reed stems and rice straw biomasses pretreated with optimized Fenton-like reagents (Fe3O4 and H2O2) increased glucose production by 177 and 87%, respectively, compared to the control without the catalysts.  相似文献   

16.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+]o) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas. (Mol Cell Biochem 269: 165–173, 2005)  相似文献   

17.
Insulin resistance results, in part, from impaired insulin signaling in insulin target tissues. Consequently, increased levels of insulin are necessary to control plasma glucose levels. The effects of elevated insulin levels on pancreatic beta (β) cell function, however, are unclear. In this study, we investigated the possibility that insulin may influence survival of pancreatic β cells. Studies were conducted on RINm, RINm5F and Min-6 pancreatic β-cells. Cell death was induced by treatment with H2O2, and was estimated by measurements of LDH levels, viability assay (Cell-Titer Blue), propidium iodide staining and FACS analysis, and mitochondrial membrane potential (JC-1). In addition, levels of cleaved caspase-3 and caspase activity were determined. Treatment with H2O2 increased cell death; this effect was increased by simultaneous treatment of cells with insulin. Insulin treatment alone caused a slight increase in cell death. Inhibition of caspase-3 reduced the effect of insulin to increase H2O2-induced cell death. Insulin increased ROS production by pancreatic β cells and increased the effect of H2O2. These effects were increased by inhibition of IR signaling, indicative of an effect independent of the IR cascade. We conclude that elevated levels of insulin may act to exacerbate cell death induced by H2O2 and, perhaps, other inducers of apoptosis.  相似文献   

18.
It was shown that tobacco leaf treatment with 100 mM H2O2 increased their content of endogenous H2O2 and activities of catalase and hydrolases (acid phosphatase, proteases, and RNase) and also caused various changes in the cell structure. In this case, programmed cell death (PCD) occurred in some cells, which was observed as chromatin condensation, cytoplasm collapse, etc. In the meantime, many cells displayed organelle activation rather than PCD. It is suggested that cells that undergo H2O2-dependent PCD release signaling molecules inducing protective mechanisms against oxidative stress in neighboring cells not exhibiting PCD.  相似文献   

19.
The effects of N6-2′-O-dibutyryl cyclic AMP on glucose metabolism and lipolysis in fragments of rat epididymal adipose tissue were studied. Measurements were made of glucose uptake, conversion of glucose carbon to CO2 and tissue fatty acids and glyceride-glycerol, lactate production, and glycerol release. Low concentrations of dibutyryl cyclic AMP (0.1–0.5 mM) increased all parameters of glucose metabolism and inhibited glycerol release in tissue from both normally fed and fasted rats. Higher concentrations of dibutyryl cyclic AMP (3–5 mM) diminished glucose utilization and greatly accelerated lipolysis. Insulin, 50 μunits/ml, accelerated glucose metabolism in the presence of either low or high concentrations of dibutyryl cyclic AMP though the effect of insulin was greatly reduced by 3 mM dibutyryl cyclic AMP. Tissue exposed to concentrations of dibutyryl cyclic AMP which inhibited glucose metabolism (5 mM), then rinsed and reincubated without dibutyryl cyclic AMP, displayed increased glucose utilization. The results of these experiments emphasize the need for caution in interpretation of the effects of dibutyryl cyclic AMP on adipose tissue metabolism and the need for further research to elucidate the role of cyclic AMP in the regulation of glucose metabolism.  相似文献   

20.
This study examined the effects of season-long exposure of Chinese pine (Pinus tabulaeformis) to elevated carbon dioxide (CO2) and/or ozone (O3) on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in needles. Trees grown in open-top chambers (OTC) were exposed to control (ambient O3, 55 nmol mol−1 + ambient CO2, 350 μmol mol−1, CK), elevated CO2 (ambient O3 + high CO2, 700 μmol mol−1, EC) and elevated O3 (high O3, 80 ± 8 nmol mol−1 + ambient CO2, EO) OTCs from 1 June to 30 September. Plants grown in elevated CO2 OTC had a growth increase of axial shoot and needle length, compared to control, by 20% and 10% respectively, while the growth in elevated O3 OTC was 43% and 7% less respectively, than control. An increase in IAA content and POD activity and decrease in IAAO activity were observed in trees exposed to elevated CO2 concentration compared with control. Elevated O3 decreased IAA content and had no significant effect on IAAO activity, but significantly increased POD activity. When trees pre-exposed to elevated CO2 were transferred to elevated O3 (EC–EO) or trees pre-exposed to elevated O3 were transferred to elevated CO2 (EO–EC), IAA content was lower while IAAO activity was higher than that transferred to CK (EC–CK or EO–CK), the change in IAA content was also related to IAAO activity. The results indicated that IAAO and POD activities in Chinese pine needles may be affected by the changes in the atmospheric environment, resulting in the change of IAA metabolism which in turn may cause changes in Chinese pine’s growth. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号