首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryschon, T. W., J. C. Jarvis, S. Salmons, and R. S. Balaban.High-energy phosphates and tension production in rabbit tibialisanterior/extensor digitorum longus muscles. J. Appl. Physiol. 82(3): 1024-1029, 1997.The effects ofrepetitive muscle contraction on energy state and tension productionwere studied in rabbit tibialis anterior/extensor digitorum longusmuscles that had been subjected to 90 days of continuous indirectelectrical stimulation at 10 Hz. Anesthetized chronically stimulatedand control rabbits were challenged with 15 min of stimulation at 4 and15 tetani/min.Pi-to-phosphocreatine (PCr) ratio(Pi/PCr) was measured in vivo before, during, andafter acute stimulation by31P-magnetic resonancespectroscopy, and tension was recorded at the same time. AlthoughPi/PCr was low at rest, it wassignificantly higher in chronically stimulated muscle than in controlmuscle (0.20 ± 0.02 vs. 0.05 ± 0.01, P < 0.05). Stimulation of control muscle for 15 min at both 4 and 15 tetani/min induced a significant rise in Pi/PCr, whereas the sameconditions in chronically stimulated muscle did not produce anysignificant departure from initial levels. The tension produced bycontrol muscle fell to 93 ± 3% of its initial value duringstimulation at 4 tetani/min and to 61 ± 7% at 15 tetani/min,respectively. In chronically stimulated muscle, on the other hand,tension was potentiated above its initial level at both stimulationrates (135 ± 15 and 138 ± 11%, respectively) and remainedsignificantly elevated throughout each trial. The ability ofchronically stimulated muscle to sustain high levels of activity withminimal perturbations in Pi/PCr ordecrement in tension is attributable to cellular adaptations thatinclude a well-documented increase in oxidative capacity.

  相似文献   

2.
Skeletal muscle fiber types differ in their contents of total phosphate, which includes inorganic phosphate (Pi) and high-energy organic pools of ATP and phosphocreatine (PCr). At steady state, uptake of Pi into the cell must equal the rate of efflux, which is expected to be a function of intracellular Pi concentration. We measured 32P-labeled Pi uptake rates in different muscle fiber types to determine whether they are proportional to cellular Pi content. Pi uptake rates in isolated, perfused rat hindlimb muscles were linear over time and highest in soleus (2.42 ± 0.17 µmol·g–1·h–1), lower in red gastrocnemius (1.31 ± 0.11 µmol·g–1·h–1), and lowest in white gastrocnemius (0.49 ± 0.06 µmol·g–1·h–1). Reasonably similar rates were obtained in vivo. Pi uptake rates at plasma Pi concentrations of 0.3–1.7 mM confirm that the Pi uptake process is nearly saturated at normal plasma Pi levels. Pi uptake rate correlated with cellular Pi content (r = 0.99) but varied inversely with total phosphate content. Sodium-phosphate cotransporter (PiT-1) protein expression in soleus and red gastrocnemius were similar to each other and seven- to eightfold greater than PiT-1 expression in white gastrocnemius. That the PiT-1 expression pattern did not match the pattern of Pi uptake across fiber types implies that other factors are involved in regulating Pi uptake in skeletal muscle. Furthermore, fractional turnover of the cellular Pi pool (0.67, 0.57, and 0.33 h–1 in soleus, red gastrocnemius, and white gastrocnemius, respectively) varies among fiber types, indicating differential management of intracellular Pi, likely due to differences in resistance to Pi efflux from the fiber. inorganic phosphate; sodium-inorganic phosphate transporters; PiT-2; inorganic phosphate efflux  相似文献   

3.
Inorganic phosphate(Pi) accumulates in the fibers of actively working musclewhere it acts at various sites to modulate contraction. To characterizethe role of Pi as a regulator of the sarcoplasmic reticulum(SR) calcium (Ca2+) release channel, we examined the actionof Pi on purified SR Ca2+ release channels,isolated SR vesicles, and skinned skeletal muscle fibers. In singlechannel studies, addition of Pi to the cis chamberincreased single channel open probability (Po;0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mMPi) by decreasing mean channel closed time; mean channelopen times were unaffected. In contrast, the ATP analog,,-methyleneadenosine 5'-triphosphate (AMP-PCP), enhancedPo by increasing single channel open time anddecreasing channel closed time. Pi stimulation of[3H]ryanodine binding by SR vesicles wassimilar at all concentrations of AMP-PCP, suggesting Pi andadenine nucleotides act via independent sites. In skinned musclefibers, 40 mM Pi enhanced Ca2+-inducedCa2+ release, suggesting an in situ stimulation ofthe release channel by high concentrations of Pi. Ourresults support the hypothesis that Pi may be an importantendogenous modulator of the skeletal muscle SR Ca2+ releasechannel under fatiguing conditions in vivo, acting via a mechanismdistinct from adenine nucleotides.

  相似文献   

4.
The effects of Pi onsarcoplasmic reticulum (SR) Ca2+ regulation were studied inmechanically skinned rat skeletal muscle fibers. Brief application ofcaffeine was used to assess the SR Ca2+ content, andchanges in concentration of Ca2+([Ca2+]) within the cytosol were detected withfura 2 fluorescence. Introduction of Pi (1-40 mM)induced a concentration-dependent Ca2+ efflux from the SR.In solutions lacking creatine phosphate (CP), the amplitude of thePi-induced Ca2+ transient approximatelydoubled. A similar potentiation of Pi-induced Ca2+ release occurred after inhibition of creatine kinase(CK) with 2,4-dinitrofluorobenzene. In the presence of ruthenium red or ryanodine, caffeine-induced Ca2+ release was almostabolished, whereas Pi-induced Ca2+ release wasunaffected. However, introduction of the SR Ca2+ ATPaseinhibitor cyclopiazonic acid effectively abolishedPi-induced Ca2+ release. These data suggestthat Pi induces Ca2+ release from the SR byreversal of the SR Ca2+ pump but not via the SRCa2+ channel under these conditions. If this occurs inintact skeletal muscle during fatigue, activation of a Ca2+efflux pathway by Pi may contribute to the reporteddecrease in net Ca2+ uptake and increase in resting[Ca2+].

  相似文献   

5.
We measuredsignificant undershoots of the concentrations of free ADP([ADP]) and Pi([Pi]) and the freeenergy of ATP hydrolysis (GATP) belowinitial resting levels during recovery from severe ischemic exercisewith 31P-nuclear magneticresonance spectroscopy in 11 healthy sports students. Undershoots ofthe rate of oxidative phosphorylation would be predicted if the rate ofoxidative phosphorylation would depend solely on free[ADP],[Pi], orGATP. However,undershoots of the rate of oxidative phosphorylation have not beenreported in the literature. Furthermore, undershoots of the rate ofoxidative phosphorylation are unlikely because there is evidence that a balance between ATP production and consumption cannot be achieved if anundershoot of the rate of oxidative phosphorylation actually occurs.Therefore, oxidative phosphorylation seems to depend not only on free[ADP],[Pi], orGATP. Anexplanation is that acidosis-related or other factors control oxidativephosphorylation additionally, at least under some conditions.

  相似文献   

6.
The cytoplasmic [MgATP]/[ATP]free ratios, free Mg2+ concentrations,and phosphorylation potentials in mung bean [Vigna mungo (L.)Hepper] root tip cells were investigated by 31P nuclear magneticresonance spectroscopy. 31P NMR spectra show well defined peaksdue to G6P, cytoplasmic Pi, vacuolar Pi, ATP, UDP-glucose andnicotinamide adenine nucleotides. The concentrations of phosphorusmetabolites were determined from quantitative 31P NMR spectra.The [MgATP]/[ATP]free ratio was 9.45. Accordingly, about 90%of the cytoplasmic ATP was complexed to Mg2+. Utilizing thedissociation constant (Kd) determined for MgATP, the cytoplasmicfree Mg2+ concentration was estimated to be 0.4mM. The NMR-derivedphosphorylation potential, [ATP]/([ADP][Pi]), was 960 M-1. Thesodium azide treatment decreased the [ATP]/[ADP] ratio and thephosphorylation potential, and increased the [Mg2+]free. Metabolicinhibition may have been enhanced by an increase in [Mg2+freeand a decrease in the free energy change for ATP hydrolysis,which resulted due to a decrease in the ATP level. 1Present address: National Food Research Institute, TsukubaCity, Ibaraki 305, Japan. (Received February 8, 1988; Accepted June 1, 1988)  相似文献   

7.
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle triggered in susceptible individuals by inhalation anesthetics and depolarizing skeletal muscle relaxants. This syndrome has been linked to a missense mutation in the type 1 ryanodine receptor (RyR1) in more than 50% of cases studied to date. Using double-barreled Ca2+ microelectrodes in myotubes expressing wild-type RyR1 (WTRyR1) or RyR1 with one of four common MH mutations (MHRyR1), we measured resting intracellular Ca2+ concentration ([Ca2+]i). Changes in resting [Ca2+]i produced by several drugs known to modulate the RyR1 channel complex were investigated. We found that myotubes expressing any of the MHRyR1s had a 2.0- to 3.7-fold higher resting [Ca2+]i than those expressing WTRyR1. Exposure of myotubes expressing MHRyR1s to ryanodine (500 µM) or (2,6-dichloro-4-aminophenyl)isopropylamine (FLA 365; 20 µM) had no effects on their resting [Ca2+]i. However, when myotubes were exposed to bastadin 5 alone or to a combination of ryanodine and bastadin 5, the resting [Ca2+]i was significantly reduced (P < 0.01). Interestingly, the percent decrease in resting [Ca2+]i in myotubes expressing MHRyR1s was significantly greater than that for WTRyR1. From these data, we propose that the high resting myoplasmic [Ca2+]i in MHRyR1 expressing myotubes is due in part to a related structural conformation of MHRyR1s that favors "passive" calcium leak from the sarcoplasmic reticulum. ryanodine; FLA 365; bastadin 5; resting intracellular calcium concentration; sarcoplasmic reticulum  相似文献   

8.
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049–C2060, 2001). We incorporated equations for Ca2+ and Mg2+ buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K+ channel and L-type Ca2+ channel, Na+-K+-ATPase, and sarcolemmal and sarcoplasmic Ca2+-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different INa, Ito, IKr, IKs, and IKp channel properties. The results indicate that the ATP-sensitive K+ channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, Pi, total Mg2+, Na+, K+, Ca2+, and pH diastolic levels are normal. The model predicts that only KATP ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the KATP channel opening through metabolic interactions with the endogenous PI cascade (PIP2, PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes. ATP-sensitive K+ channel; creatine and adenylate kinase reactions; phosphatidylinositol phosphates; heart; mathematical model  相似文献   

9.
Spinach chloroplasts catalyzed ATP formation from acetyl phosphateand ADP when exposed to light. No ATP formation was detectablein the dark. In the absence of ADP, chloroplasts did not hydrolyzeacetyl phosphate in the light or dark. Neither high-energy phosphatessuch as creatine phosphate and phosphoenol pyruvate nor inhibitorsof photophosphorylation competitive with Pi, such as ß-naphthylmonophosphate, phenyl phosphate and pyridoxal 5-phosphate, couldsubstitute for acetyl phosphate as a Pi donor. The apparentKm values for acetyl phosphate and Pi were 0.81 mM and 0.25mM, respectively. The maximal rate of ATP formation with acetylphosphate and Pi were 331 and 521 µmol ATP formed mg chl–1hr–1, respectively. The optimum pH value for acetyl phosphate-dependentATP formation was about 8.0. NH4Cl, dicyclohexylcarbodiimideand triphenyltin chloride inhibited the acetyl phosphate-dependentATP formation. Acid-base transition also could induce subsequentATP formation from acetyl phosphate and ADP. These results suggestthat the acetyl phosphate-dependent ATP formation requires theformation and the utilization of a proton-motive force as ordinaryphotophosphorylation does. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H. S. Part of this work was reported at the 1981 AnnualMeeting of the Japanese Society of Plant Physiologists (Sapporo,May 8, 1981). (Received August 25, 1981; Accepted November 1, 1981)  相似文献   

10.
Characterization of inorganic phosphate transport in osteoclast-like cells   总被引:1,自引:0,他引:1  
Osteoclasts possess inorganic phosphate (Pi) transport systems to take up external Pi during bone resorption. In the present study, we characterized Pi transport in mouse osteoclast-like cells that were obtained by differentiation of macrophage RAW264.7 cells with receptor activator of NF-B ligand (RANKL). In undifferentiated RAW264.7 cells, Pi transport into the cells was Na+ dependent, but after treatment with RANKL, Na+-independent Pi transport was significantly increased. In addition, compared with neutral pH, the activity of the Na+-independent Pi transport system in the osteoclast-like cells was markedly enhanced at pH 5.5. The Na+-independent system consisted of two components with Km of 0.35 mM and 7.5 mM. The inhibitors of Pi transport, phosphonoformic acid, and arsenate substantially decreased Pi transport. The proton ionophores nigericin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone as well as a K+ ionophore, valinomycin, significantly suppressed Pi transport activity. Analysis of BCECF fluorescence indicated that Pi transport in osteoclast-like cells is coupled to a proton transport system. In addition, elevation of extracellular K+ ion stimulated Pi transport, suggesting that membrane voltage is involved in the regulation of Pi transport activity. Finally, bone particles significantly increased Na+-independent Pi transport activity in osteoclast-like cells. Thus, osteoclast-like cells have a Pi transport system with characteristics that are different from those of other Na+-dependent Pi transporters. We conclude that stimulation of Pi transport at acidic pH is necessary for bone resorption or for production of the large amounts of energy necessary for acidification of the extracellular environment. Na+-dependent phosphate cotransporter; RAW264.7; phosphate uptake  相似文献   

11.
Data from 31P-nuclear magnetic resonance spectroscopy of human forearm flexor muscle were analyzed based on a previously developed model of mitochondrial oxidative phosphorylation (PLoS Comp Bio 1: e36, 2005) to test the hypothesis that substrate level (concentrations of ADP and inorganic phosphate) represents the primary signal governing the rate of mitochondrial ATP synthesis and maintaining the cellular ATP hydrolysis potential in skeletal muscle. Model-based predictions of cytoplasmic concentrations of phosphate metabolites (ATP, ADP, and Pi) matched data obtained from 20 healthy volunteers and indicated that as work rate is varied from rest to submaximal exercise commensurate increases in the rate of mitochondrial ATP synthesis are effected by changes in concentrations of available ADP and Pi. Additional data from patients with a defect of complex I of the respiratory chain and a patient with a deficiency in the mitochondrial adenine nucleotide translocase were also predicted the by the model by making the appropriate adjustments to the activities of the affected proteins associates with the defects, providing both further validation of the biophysical model of the control of oxidative phosphorylation and insight into the impact of these diseases on the ability of the cell to maintain its energetic state. computational model; mitochondria; cellular energetics; oxidative phosphorylation; 31P-NMR spectroscopy  相似文献   

12.
To study the dependence of the forward flux of creatine kinase(CK) on its substrates and products we designed an acute normoxic modelof steady-state depletion of phosphocreatine (PCr) and adenylate in theisovolumic acetate-perfused rat heart. Various concentrations of PCrand ATP were induced by prior perfusion with 2 deoxy-D-glucose in the presenceof insulin. The apparent rate constant(kf) and theforward CK flux were measured under metabolic and contractile steadystate by progressive saturation-transfer31P nuclear magnetic resonance(NMR). At high adenylate content CK flux was constant for a twofoldreduction in PCr concentration ([PCr]); CK flux was 6.3 ± 0.6 mM/s (vs. 6.5 ± 0.2 mM/s in control) because of adoubling of kf.Although, at the lowest ATP concentration and [PCr], CKflux was reduced by 50%, it nevertheless always remained higher thanATP synthesis estimated by parallel oxygen consumption measurement.NMR-measured flux was compared with the flux computed under thehypothesis of CK equilibrium. CK flux could not be fully predicted bythe concentrations of CK metabolites. This is discussed in terms ofmetabolite and CK isozyme compartmentation.

  相似文献   

13.
The repeated elevation of cytosolic Ca2+ concentration ([Ca2+]i) above resting levels during contractile activity has been associated with long-lasting muscle fatigue. The mechanism underlying this fatigue appears to involve elevated [Ca2+]i levels that induce disruption of the excitation-contraction (E-C) coupling process at the triad junction. Unclear, however, are which aspects of the activity-related [Ca2+]i changes are responsible for the deleterious effects, in particular whether they depend primarily on the peak [Ca2+]i reached locally at particular sites or on the temporal summation of the increased [Ca2+] in the cytoplasm as a whole. In this study, we used mechanically skinned fibers from rat extensor digitorum longus muscle, in which the normal E-C coupling process remains intact. The [Ca2+]i was raised either by applying a set elevated [Ca2+] throughout the fiber or by using action potential stimulation to induce the release of sarcoplasmic reticulum Ca2+ by the normal E-C coupling system with or without augmentation by caffeine or buffering with BAPTA. Herein we show that elevating [Ca2+]i in the physiological range of 2–20 µM irreversibly disrupts E-C coupling in a concentration-dependent manner but requires exposure for a relatively long time (1–3 min) to cause substantial uncoupling. The effectiveness of Ca2+ released via the endogenous system in disrupting E-C coupling indicates that the relatively high [Ca2+]i attained close to the release site at the triad junction is a more important factor than the increase in bulk [Ca2+]i. Our results suggest that during prolonged vigorous activity, the many repeated episodes of relatively high triadic [Ca2+] can disrupt E-C coupling and lead to long-lasting fatigue. skeletal muscle; low-frequency fatigue; ryanodine receptor; skinned fiber  相似文献   

14.
Increases in Pi combined with decreases in myoplasmic Ca2+ are believed to cause a significant portion of the decrease in muscular force during fatigue. To investigate this further, we determined the effect of 30 mM Pi on the force-Ca2+ relationship of chemically skinned single muscle fibers at near-physiological temperature (30°C). Fibers isolated from rat soleus (slow) and gastrocnemius (fast) muscle were subjected to a series of solutions with an increasing free Ca2+ concentration in the presence and absence of 30 mM Pi at both low (15°C) and high (30°C) temperature. In slow fibers, 30 mM Pi significantly increased the Ca2+ required to elicit measurable force, referred to as the activation threshold at both low and high temperatures; however, the effect was twofold greater at the higher temperature. In fast fibers, the activation threshold was unaffected by elevating Pi at 15°C but was significantly increased at 30°C. At both low and high temperatures, 30 mM Pi increased the Ca2+ required to elicit half-maximal force (pCa50) in both slow and fast fibers, with the effect of Pi twofold greater at the higher temperature. These data suggest that during fatigue, reductions in the myoplasmic Ca2+ and increases in Pi act synergistically to reduce muscular force. Consequently, the combined changes in these ions likely account for a greater portion of fatigue than previously predicted based on studies at lower temperatures or high temperatures at saturating Ca2+ levels. force-pCa relationship; phosphate; fatigue  相似文献   

15.
The most important function of mitochondria is the production of energy in the form of ATP. The socio-economic impact of human diseases that affect skeletal muscle mitochondrial function is growing, and improving their clinical management critically depends on the development of non-invasive assays to assess mitochondrial function and monitor the effects of interventions. 31P magnetic resonance spectroscopy provides two approaches that have been used to assess in vivo ATP synthesis in skeletal muscle: measuring Pi  ATP exchange flux using saturation transfer in resting muscle, and measuring phosphocreatine recovery kinetics after exercise. However, Pi  ATP exchange does not represent net mitochondrial ATP synthesis flux and has no simple relationship with mitochondrial function. Post-exercise phosphocreatine recovery kinetics, on the other hand, yield reliable measures of muscle mitochondrial capacity in vivo, whose ability to define the site of functional defects is enhanced by combination with other non-invasive techniques.  相似文献   

16.
Abnormal respiratory muscle function isthought to contribute to breathlessness and exercise intolerance inheart failure but little is known about possible alterations in thefunction of such muscle. We have measured tetanic force andintracellular Ca2+ concentration([Ca2+]i) in isolated, arteriallyperfused hemidiaphragm preparations from a rabbit coronary arteryligation model of heart failure. Increasing stimulation frequency(10-100 Hz) caused a progressive increase of force and[Ca2+]i in control preparations,whereas force and [Ca2+]i onlyincreased between 10 and 25 Hz stimulation (decreasing at higherfrequencies) in preparations from ligated animals. Cyclopiazonic acidproduced a dose-dependent shift in the relationship between stimulationfrequency and [Ca2+]i in controlpreparations that was similar to the shift observed in the diaphragm ofcoronary-ligated animals. These data indicate that the in vitrocontractile characteristics of the diaphragm are significantly alteredin our model and that altered[Ca2+]i regulation contributes tothe reduced diaphragm strength observed in heart failure.

  相似文献   

17.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

18.
The effects of 10 µM glibenclamide, anATP-sensitive K+ (KATP) channelblocker, and 100 µM pinacidil, a channel opener, were studied todetermine how the KATP channel affects mouse extensor digitorum longus (EDL) and soleus muscle during fatigue. Fatigue waselicited with 200-ms-long tetanic contractions every second. Glibenclamide did not affect rate and extent of fatigue, force recovery, or 86Rb+ fractional loss. The onlyeffects of glibenclamide during fatigue were: an increase in restingtension (EDL and soleus), a depolarization of the cell membrane, aprolongation of the repolarization phase of action potential, and agreater ATP depletion in soleus. Pinacidil, on the other hand,increased the rate but not the extent of fatigue, abolished the normalincrease in resting tension during fatigue, enhanced force recovery,and increased 86Rb+ fractional loss in both theEDL and soleus. During fatigue, the decreases in ATP andphosphocreatine of soleus muscle were less in the presence ofpinacidil. The glibenclamide effects suggest that fatigue, elicitedwith intermittent contractions, activates few KATP channelsthat affect resting tension and membrane potentials but not tetanicforce, whereas opening the channel with pinacidil causes a fasterdecrease in tetanic force, improves force recovery, and helps inpreserving energy.

  相似文献   

19.
The calcineurin-mediated signal transduction via nuclear factor of activated T cells (NFATc1) is involved in upregulating slow myosin heavy chain (MHC) gene expression during fast-to-slow transformation of skeletal muscle cells. This study aims to investigate the Ca2+ signal necessary to activate the calcineurin-NFATc1 cascade in skeletal muscle. Electrostimulation of primary myocytes from rabbit for 24 h induced a distinct fast-to-slow transformation at the MHC mRNA level and a full activation of the calcineurin-NFATc1 pathway, although resting Ca2+ concentration ([Ca2+]i) remained unaltered at 70 nM. During activation, the calcium transients of these myocytes reach a peak concentration of 500 nM. Although 70 nM [Ca2+]i does not activate calcineurin-NFAT, we show by the use of Ca2+ ionophore that the system is fully activated when [Ca2+]i is 150 nM in a sustained manner. We conclude that the calcineurin signal transduction pathway and the slow MHC gene in cultured skeletal muscle cells are activated by repetition of the rapid high-amplitude calcium transients that are associated with excitation-contraction coupling rather than by a sustained elevation of resting Ca2+ concentration. muscle plasticity; NFATc1; resting calcium concentration  相似文献   

20.
Understanding muscle energetics is a problem in optimizing supply of ATP to the demands of ATPases. The complexity of reactions and their fluxes to achieve this balance is greatly reduced by recognizing constraints imposed by the integration of common metabolites at fixed stoichiometry among modular units. ATPase is driven externally. Oxidative phosphorylation and glycogenolysis are the suppliers. We focus on their regulation which involves different controls, but reduces to two principles that enable facile experimental analysis of the supply and demand fluxes. The ratio of concentration of phosphocreatine (PCr) to ATP, not their individual values, sets the range of achievable concentrations of ADP in resting and active muscle (at fixed pH) in different cell types. This principle defines the fraction of available flux of oxidative phosphorylation utilized (at fixed enzyme activities). Then the kinetics of PCr recovery defines the kinetics of oxygen supply and substrate utilization. The second principle is the constancy of PCr and H(+) (lactate) production by glycogenolysis due to the coupling of ATPase and glycolysis. This principle enables glycogenolytic flux to be measured from intracellular proton loads. Further simplification occurs because the magnitude of the interacting fluxes and metabolite concentrations are specified within narrow limits when both the resting and active fluxes are quantified. Thus there is a small set of rules for assessing and understanding the thermodynamics and kinetics of muscle energetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号