首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Alcohol dependence is a severe disorder contributing substantially to the global burden of disease. Despite the detrimental consequences of chronic alcohol abuse and dependence, effective prevention strategies as well as treatment options are largely missing to date. Accumulating evidence suggests that gene-environment interactions, including epigenetic mechanisms, play a role in the etiology of alcohol dependence. A recent epigenome-wide study reported widespread alterations of DNA methylation patterns in alcohol dependent patients compared to control individuals. In the present study, we validate and replicate one of the top findings from this previous investigation in an independent cohort: the hypomethylation of GDAP1 in patients. To our knowledge, this is the first independent replication of an epigenome-wide finding in alcohol dependence. Furthermore, the AUDIT as well as the GSI score were negatively associated with GDAP1 methylation and we found a trend toward a negative association between GDAP1 methylation and the years of alcohol dependency, pointing toward a potential role of GDAP1 hypomethylation as biomarker for disease severity. In addition, we show that the hypomethylation of GDAP1 in patients reverses during a short-term alcohol treatment program, suggesting that GDAP1 DNA methylation could also serve as a potential biomarker for treatment outcome. Our data add to the growing body of knowledge on epigenetic effects in alcohol dependence and support GDAP1 as a novel candidate gene implicated in this disorder. As the role of GDAP1 in alcohol dependence is unknown, this novel candidate gene should be followed up in future studies.  相似文献   

2.
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so‐called virus‐induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5′ end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3′ end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3′ end, and an overall increase in CG methylation in the 5′ end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.  相似文献   

3.
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post‐traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal‐prefrontal brain‐derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal‐prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme‐linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF‐TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.  相似文献   

4.
To ascertain whether p53 deficiency in vivo leads to the deregulation of DNA methylation machinery prior to tumor development, we investigated the expression profile of DNA methyltransferases in the thymus and the liver of p53(+/+), p53(+/-), and p53(-/-) mice at 7 weeks of age before tumor development. The expression of DNA methyltransferases was examined in the thymus at 7 weeks of age, since the malignant T-cell lymphoma develops most frequently in p53(-/-) mice around 20 weeks of age. Both mRNA and protein levels of Dnmt1 and Dnmt3b were increased in the thymus and the liver of p53-deficient mice. The expression of Dnmt3a was also increased in the liver but not in the thymus of p53-deficient mice. Dnmt3L expression was reduced in the thymus of p53(+/-) and p53(-/-) mice. The total 5-methylcytosine (5-MeC) in the genomic DNA of p53(+/+), p53(+/-), and p53(-/-) mice was quantitated by dot-blot using antibody against 5-MeC. Global methylation was increased in the thymus and the liver of p53-deficient mice. To correlate the deregulated expression of DNA methyltransferases with the disturbance of the epigenetic integrity, we examined the DNA methylation of the imprinting control region (ICR) at the insulin-like growth factor II (Igf2)/H19 loci in the thymus and the liver of p53(+/+), p53(+/-), and p53(-/-) mice. The region containing two CCCTC binding factor (CTCF) binding sites in the 5'-ICR tended to be hypomethylated in the thymus of p53(-/-) mice, but not in the liver. The expression profile of Igf2 and H19 indicated that the thymus-specific changes of Igf2 and H19 expression were coherent to the hypomethylation of the ICR in the thymus. Our results suggest that p53 is required for the maintenance of DNA methylation patterns in vivo.  相似文献   

5.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号