首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.  相似文献   

3.
Previous studies have shown that digoxin decreases testosterone secretion in testicular interstitial cells. However, the effect of digoxin on progesterone secretion in luteal cells is unclear. Progesterone is known as an endogenous digoxin-like hormone (EDLH). This study investigates how digitalis affected progesterone production and whether progesterone antagonized the effects of digitalis. Digoxin or digitoxin, but not ouabain, decreased the basal and human chorionic gonadotropin (hCG)-stimulated progesterone secretion as well as the activity of cytochrome P450 side chain cleavage enzyme (P450scc) in luteal cells. 8-Br-cAMP and forskolin did not affect the reduction. Neither the amount of P450scc, the amount of steroidogenic acute regulatory (StAR) protein, nor the activity of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) was affected by digoxin or digitoxin. Moreover, in testicular interstitial and luteal cells, progesterone partially attenuated the reduction of pregnenolone by digoxin or digitoxin and the progesterone antagonist, RU486, blocked this attenuation. These new findings indicated that (1) digoxin or digitoxin inhibited pregnenolone production by decreasing the activity of P450scc enzyme, but not Na(+)-K(+)-ATPase, resulting in a decrease on progesterone secretion in rat luteal cells, and (2) the inhibitory effect on pregnenolone production by digoxin or digitoxin was reversed partially by progesterone. In conclusion, digoxin or digitoxin decreased progesterone production via the inhibition of pregnenolone by decreasing P450scc activity. Progesterone, an EDLH, could antagonize the effects of digoxin or digitoxin in luteal cells.  相似文献   

4.
The aim of these studies was to investigate the effect of LH, progesterone (P4), PGE, noradrenaline (NA) and a nitric oxide donor, S-nitroso-N-acetylpenicillamine (S-NAP), on steroid acute regulatory protein (StAR), 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and cytochrome P450 side chain cleavage (P450scc) gene expression and on the synthesis of their protein products. Bovine luteal cells were collected and prepared on days 6-10 of the estrous cycle and preincubated in vitro for 24 h. Thereafter, medium was changed and supplemented with one of six treatments: control medium, LH (100 ng/ml), P4 (10(-5)M), PGE2 (10(-6)M), NA (10(-5)M) or S-NAP (10(-4)M). In Experiment 1, luteal cells (10(6)/well) were incubated for 3, 6, 18 and 24 h. After incubation, total RNA was isolated and P4 concentrations in medium was determined. Semiquantitative RT-PCR was used to measure gene expression. In Experiment 2, luteal cells were preincubated for 24h, then stimulated as in Experiment 1. Total protein was isolated from lysed cells and Western blot analysis was performed using specific antibodies against the StAR, 3beta-HSD and cytochrome P450scc proteins. Bands were analyzed by means of KODAK 1D Image Analysis Software. In Experiment 1, LH and PGE2 stimulated secretion of progesterone from luteal cells. Concentrations of mRNA for StAR, 3beta-HSD, cytochrome P450scc were increased after 6 h in cells stimulated with LH, PGE2 and P4 (P<0.05). Gene expression was not affected by NA. In Experiment 2, LH, P4 and PGE2 induced an increase in the concentration of these three proteins. S-NAP inhibited both concentrations of mRNA and protein for StAR, 3beta-HSD, cytochrome P450scc. Therefore, the increase in secretion of P4 induced by LH and PGE2 is associated with increases in StAR, 3beta-HSD and cytochrome P450scc gene expression. This genomic response may be mediated in part through a positive effect of P4 on the expression of these genes observed in this experiment.  相似文献   

5.
We obtained uterine and peripheral venous plasma, and samples of luteal and placental tissues from 2- to 7-year-old, Eurasian mountain reindeer (Rangifer tarandus tarandus) from a free-living, semi-domesticated herd in northern Norway in November 1995, and February and March 1996. In November, ovarian venous blood was also collected from four animals. Plasma samples were assayed for progesterone and oestradiol. The tissue samples were examined by light and electron microscopy, steroid dehydrogenase histochemistry, and northern blot analysis for RNAs for 3beta-hydroxy-steroid dehydrogenase (3beta-HSD) and P450 (side chain cleavage (scc)). Peripheral blood was taken from non-pregnant females in the same herd on the same dates. Peripheral progesterone concentrations in pregnant reindeer (3.4 +/- 0.5 ng/ml, n = 8) clearly exceeded those in non-pregnant animals (0.40 +/- 0.14 ng/ml; P < 0.0004 , n = 10) but oestradiol levels were only marginally higher in pregnant (6.0 +/- 0.7 pg/ml) than in non-pregnant (4.8 +/- 0.5 pg/ml; P = 0.35) reindeer at the stages examined. In pregnant animals, peripheral progesterone and oestradiol concentrations rose slightly between November and March but the differences did not reach significance (progesterone, P = 0.083; oestradiol, P = 0.061). In November, progesterone concentrations in the ovarian vein (79 +/- 15 ng/ml) greatly exceeded (P < 0.03) those in the uterine vein ( 10 +/- 4 ng/ml) which in turn exceeded the levels in the peripheral blood (2.8 +/- 0.4 ng/ml; P < 0.29). Oestradiol concentrations were slightly but significantly (P < 0.05) higher in the ovarian (20 +/- 3 pg/ml) than the uterine vein (13 +/- 1 pg/ml) and, in turn, greater (P < 0.03) than in peripheral blood (4.6 +/- 0.4 pg/ml). All samples of luteal tissue consisted exclusively of normal fully-differentiated cells and stained intensely for 3beta-HSD. Isolated groups of placental cells also stained strongly for 3beta-HSD. RNA for P450 (scc) and 3beta-HSD was abundant in all corpora lutea and lower concentrations of P450 (scc) were present in the placenta. 3beta-HSD RNA in the placenta was below the limit of detection. We conclude that the corpus luteum remains an important source of progesterone throughout pregnancy in reindeer but that the placenta is also steroidogenic.  相似文献   

6.
Inhibitory effects of flavonoid phytochemicals, flavones, flavonols and isoflavones on cortisol production were examined in human adrenal H295R cells stimulated with di-buthylyl cAMP. In addition, the inhibitory effects of these chemicals on the activity of P450scc, 3beta-HSD type II (3beta-HSD II), P450c17, P450c21 and P45011beta, steroidogenic enzymes involved in cortisol biosynthesis, were examined in the same cells. Exposure to 12.5 microM of the flavonoids 6-hydroxyflavone, 4'-hydroxyflavone, apigenin, daidzein, genistein and formononetin significantly decreased cortisol production (by 6.3, 69.6, 47.5, 26.6, 13.8 and 11.3%, respectively), and biochanin A significantly decreased cortisol production (by 47.3%) at a concentration of 25 microM without any significant cytotoxic effects or changes in cell number. Daidzin, the 7-glucoside of daidzein, did not alter cortisol production by H295R cells at concentrations over 10 microg/ml (24 microM). Daidzein-induced reduction of cortisol production by H295R cells was not inhibited by the estrogen receptor antagonist ICI 182,780. The flavonoids 6-hydroxyflavone, daidzein, genistein, biochanin A and formononetin strongly and significantly inhibited microsomal 3beta-HSD II activity at concentrations from 1 to 25 microM, and I(50) values were estimated to be 1.3, 2, 1, 0.5 and 2.7 microM, respectively. In addition, these flavonoids significantly inhibited microsomal P450c21 activity at 12.5 and/or 25 microM. In addition, 6-hydroxyflavone inhibited activity of microsomal P450c17 and mitochondrial P45011beta at 12.5 and/or 25 microM. Results of Lineweaver-Burk's plot analysis indicate that daidzein is a competitive inhibitor of the activity of 3beta-HSD II and P450c21. K(m) and V(max) values of 3beta-HSD II for DHEA were estimated to be 6.6 microM and 328pmol/minmg protein, respectively. K(m) and V(max) values of P450c21 for progesterone were estimated to be 2.8 microM and 16pmol/minmg protein, respectively. K(i) values of 3beta-HSD II and P450c21 for daidzein were estimated to be 2.9 and 33.3 microM, respectively.  相似文献   

7.
Chen LY  Huang YL  Liu MY  Leu SF  Huang BM 《Life sciences》2003,72(17):1983-1995
Amphetamine influences plasma and testicular testosterone levels. However, there is no evidence that amphetamine can directly influence Leydig cell functions. In the present study, a MA-10 mouse Leydig tumor cell line was used to determine whether and how amphetamine affected Leydig cell steroidogenesis. MA-10 cells were treated with different concentrations of amphetamine without or with human chorionic gonadotropin (hCG) and/or enzyme precursors over different time durations. Steroid production, enzyme activities and StAR protein expression were determined. Amphetamine alone had no any effect on MA-10 cell steroidogenesis. However, amphetamine (10(-11)M and 10(-10)M) significantly enhanced hCG-treated progesterone production at 3 hr in MA-10 cells (p < 0.05). Furthermore, amphetamine significantly induced more progesterone production upon treatment with 22R-hydroxycholesterol (p < 0.05), a precursor of P450 side-chain cleavage enzyme (P450scc). However, amphetamine did not induce more progesterone production when treated with pregnenolone (p > 0.05), a precursor of 3beta-hydroxysteroid dehydrogenase. In addition, the expressions of StAR protein and P450scc enzyme were not significantly different between hCG alone and hCG plus amphetamine treatment in MA-10 cells (p > 0.05). These results suggested that amphetamine enhanced hCG-induced progesterone production in MA-10 cells by increasing P450scc activity without influencing StAR protein and P450scc enzyme expression or 3beta-HSD enzyme activity.  相似文献   

8.
9.
10.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

11.
12.
目的:研究三氯生对原代大鼠卵巢颗粒细胞孕酮(P4)分泌功能的影响。方法:原代大鼠卵巢颗粒细胞培养备用。取备用的卵巢颗粒细胞采用不同浓度的三氯生(0、0.01、0.1、1μM)染毒。24 h后分别采用MTT法检测颗粒细胞的相对活力、酶联免疫法(ELISA法)检测颗粒细胞P4分泌水平、实时荧光定量PCR法(q RT-PCR)及western blot法检测类固醇激素合成急性调节蛋白(St AR)、胆固醇侧链裂解酶(P450scc)以及3β-羟基类固醇脱氢酶(3β-HSD)的基因及蛋白表达水平。结果:三氯生在本研究所采用的浓度范围内对颗粒细胞的活性并没有影响(P0.05);三氯生(0.1、1μM)可抑制颗粒细胞P4的分泌,且呈现剂量依赖性下降(P0.05)。三氯生(0.1、1μM)可使St AR的基因表达水平显著增高、P450scc的基因表达水平下降(P0.05)。1μM三氯生可使St AR及P450scc的蛋白表达水平明显降低(P0.05)。三氯生对3β-HSD的基因及蛋白表达水平皆没有影响(P0.05)。结论:三氯生可抑制原代大鼠卵巢颗粒细胞的P4分泌,对类固醇激素合成关键分子的影响可能是其作用机制之一。  相似文献   

13.
The objective of this study was to investigate the levels of expression of steroid biosynthetic enzymes and steroidogenic acute regulatory protein (StAR) at different stages of ovarian follicular development in zebrafish (Danio rerio), and to investigate the sites within the steroid biosynthetic pathway that may be regulated by gonadotropins. Ovarian follicles of sexually mature fish were separated into primary, previtellogenic, vitellogenic, and mature stages and the expression of StAR, P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450 hydroxylase/lyase (P450c17), 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), 17beta-hydroxysteroid dehydrogenase type 3 (17beta-HSD3), and P450 aromatase (P450aromA) was determined by Real time RT-PCR. The expression of all genes changed significantly as follicles grew, with a decrease in the expression of StAR, P450scc, 3beta-HSD and P450c17 with maturation, and an increase in the expression of 17beta-HSD3 during vitellogenesis and 17beta-HSD1 and P450aromA during previtellogenesis. In vitro incubation of vitellogenic follicles demonstrated that the expression of StAR, 17beta-HSD3, and P450aromA increased in response to hCG, and decreased in the absence of hCG. In contrast, the expression of P450scc, 3beta-HSD, P450c17, and 17beta-HSD1 remained constant between treatments and over time. Testosterone and estradiol production in the culture medium was stimulated by human chorionic gonadotropin (hCG). These experiments aid in the characterization of the roles and regulation of steroids throughout ovarian development, and suggest that gonadotropins play a key role in the regulation of StAR, 17beta-HSD3, and P450aromA in zebrafish.  相似文献   

14.
15.
16.
The mitochondrial side-chain cleavage of cholesterol, catalysed by cytochrome P450scc, is rate-limiting in the synthesis of progesterone by the human placenta. Cytochrome P450scc activity is in turn limited by the concentration of adrenodoxin reductase (AR) in placental mitochondria. In order to better understand which components of the cholesterol side-chain cleavage system are important in the regulation of placental progesterone synthesis, we have examined their effects on P450scc activity with both saturating and limiting concentrations of AR. The present study reveals that decreasing the AR concentration causes a decrease in the K(m) of cytochrome P450scc for cholesterol, facilitating saturation of the enzyme with its substrate. Decreasing AR resulted in P450scc activity becoming less sensitive to changes in P450scc concentration. The adrenodoxin (Adx) concentration in mitochondria from term placentae is near-saturating for P450scc and under these conditions, we found that decreasing AR reduces the K(m) of P450scc for adrenodoxin. Increasing either the cholesterol or P450scc concentration increased the amount of AR required for P450scc to work at half its maximum velocity. A relatively small increase in AR can support considerably higher rates of side-chain cleavage activity when there is a coordinate increase in AR and P450scc concentrations. We conclude from this study that cholesterol is near-saturating for cytochrome P450scc activity in placental mitochondria due to the P450scc displaying a low K(m) for cholesterol resulting from the low and rate-limiting concentration of AR present. This study reveals that it is unlikely that cholesterol or adrenodoxin concentrations are important regulators of placental progesterone synthesis but AR or coordinate changes in AR and P450scc concentrations are likely to be important in its regulation.  相似文献   

17.
The regulation of LH-dependent and -independent increases in testosterone secretion by key proteins in the testes of adult rams was investigated. Serial blood samples were collected from groups of four control and passively immunized (oestradiol antiserum for 3 weeks) rams and the animals were gonadectomized in either the non-breeding season (April) or the breeding season (September). LH pulse frequency and basal (interpulse) concentrations were several times greater (P < 0.01) in the breeding season than in the non-breeding season. Neither of these parameters nor LH pulse amplitude were affected by oestradiol immunization. Parameters of testosterone episodic secretion and response to an injection (i.v.) of 15 micrograms NIH-LH-S25 were also greater (P < 0.05) in the breeding season and, with the exception of pulse frequency, in immunized rams versus controls. Substrate utilization established that testosterone biosynthesis was predominantly via the 5-ene pathway. Increases in blood testosterone concentration in the breeding season were associated with a fivefold higher (P < 0.01) activity of cytochrome P450 17alpha-hydroxylase/C-17,20 lyase (P450(17alpha)) and a 65% higher (P < 0.05) relative amount of mRNA for cytochrome P450 cholesterol side-chain cleavage enzyme complex (P450scc) in the testis. Of the steroidogenic enzyme activities examined, only that for 17beta-hydroxysteroid dehydrogenase (17beta-HSD) tended to be increased by oestradiol immunization. Blood concentrations of cholesterol lipoproteins and expression of the testicular low density lipoprotein receptor were not affected by season or immunization. The amount of steroidogenic acute regulatory protein (StAR) mRNA was 65% higher (P < 0.01) in the breeding season and 20% higher (P < 0.01) in immunized rams versus controls. These results indicate that greater LH stimulation may increase testosterone biosynthesis in the breeding season by increasing StAR mRNA (and presumably delivery of cholesterol to P450scc) and the activity of P450(17alpha), and possibly that of P450scc (activity not measured). More moderate increases in StAR mRNA and 17beta-HSD activity may explain, in part, the increases in testosterone secretion with oestradiol immunization.  相似文献   

18.
Thecal cell steroidogenesis plays a major role in folliculogenesis within the porcine ovary. Accordingly, the effects of physiological concentrations of steroids on 3 beta-hydroxysteroid dehydrogenase activity (3 beta-HSD) were determined. Theca was excised from large porcine follicles and prepared in a monolayer culture in 1 ml of serum-free media. Cells were treated 24 h after culture as follows: (1) control, (2) hCG (5 IU); (3) progesterone (P, 3 micrograms); estradiol-17 beta (E, 4 micrograms); 5 beta-dihydrotestosterone (DHT, 1 microgram); (4) hCG + P or E or DHT. At 3, 6, 12, 24 and 48 h after treatment, media were assessed for P levels. For 3 beta-HSD activity, P formation by microsomal fractions incubated with 1 microM pregnenolone + 5 microM NAD+ for 1 h (37 degrees C) was monitored. Thecal cell P secretion increased from 27 to 72 h. hCG significantly (P less than 0.05) increased P levels after 36 h compared to controls. E or E + hCG decreased P levels at 36, 48, and 72 h and DHT prevented the hCG-induced increase in P secretion. 3 beta-HSD activity in thecal microsomes increased significantly from 27 to 72 h. hCG had little effect on 3 beta-HSD activity compared with controls from 27 to 36 h, but significantly (P less than 0.05) decreased 3 beta-HSD activity at 48 and 72 h. However, P or P + hCG significantly (P less than 0.05) decreased 3 beta-HSD activity at all times. In addition, E or E + hCG significantly (P less than 0.05) decreased 3 beta-HSD activity at 48 and 72 h. DHT prevented the hCG-induced decrease in 3 beta-HSD activity. In conclusion, porcine thecal secretion of P and microsomal 3 beta-HSD activity increased during 72 h of culture. Paradoxically, the addition of hCG to cultures enhanced media P concentrations but inhibited 3 beta-HSD activity. Further, the addition of E to cultures decreased media concentrations of P while P or E decreased 3 beta-HSD activity. Therefore, paracrine/autocrine effects of locally produced steroids may play a role in modulating thecal cell steroidogenesis.  相似文献   

19.
In vivo and in vitro luteinization were investigated in the porcine ovary, with emphasis on expression of steroidogenic acute regulatory protein (StAR). StAR mRNA and protein as well as cytochrome P450 side-chain cleavage mRNA (P450scc) increased during the luteal phase in the corpus luteum (CL) and were absent in regressed CL. Cytochrome P450 aromatase mRNA (P450arom) was not detectable at any time in CL. In vitro luteinization of granulosa cells occurred over 96 h in culture, during which P450arom mRNA was present at 1 h after cell isolation but not detectable at 6 h; and P450scc and StAR mRNAs were first detectable at 6 h and 48 h, respectively. Incubation of cultures with insulin-like growth factor I (IGF-I, 10 ng/ml), dibutyryl cAMP (cAMP, 300 microM), or their combination, induced measurable StAR mRNA at 24 h (p < 0.05), increased progesterone accumulation at 48 h, and elevated both StAR and P450scc expression through 96 h. Incubation of luteinized granulosa cells with epidermal growth factor (EGF, 10 nM) changed their phenotype from epithelioid to fibroblastic, eliminated steady-state StAR expression, and interfered with cAMP induction of StAR mRNA and progesterone accumulation. EGF had little apparent effect on P450scc mRNA abundance. It is concluded that StAR expression characterizes luteinization, and early luteinization is induced by cAMP and IGF-I in vitro. Further, EGF induces a morphological and functional phenotype that appears similar to an earlier stage of granulosa cell function.  相似文献   

20.
A series of 4-aryl substituted 7-hydroxy-flavones were prepared using the three-step Baker-Venkataraman synthesis in good overall yields. The flavones were all evaluated in vitro for inhibitory activity against aromatase (P450AROM, CYP19), using human placental microsomes, and for inhibitory activity against 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD-1) using human placental cytosol. The phenyl, 4-fluoro-phenyl and 4-bromo-phenyl derivatives displayed moderate inhibitory activity against P450AROM (IC50 17.2, 13.5 and 10.1 microM, respectively), none of the flavones, including the standard genistein, displayed any inhibitory activity against 17beta-HSD type 1 at 100 microM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号