首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于服务功能的昆虫生态调控理论   总被引:2,自引:0,他引:2  
鉴于昆虫在植物传粉授精、害虫生物控制、土壤有机物分解中提供多种生态系统服务功能,本文在害虫生态调控、区域性害虫生态调控与生境管理的基础上,进一步提出基于多种生态服务功能的农田景观昆虫生态调控理论、方法与实践。认为:昆虫管理不仅仅是害虫的管理,还应包括有益昆虫(如传粉昆虫、天敌昆虫、分解昆虫)的管理,这种管理应从单一农田生态系统扩展到农田景观生态系统,充分考虑农田景观中昆虫的传粉功能、生物控害功能和分解功能,通过对功能植物、作物与非作物生境的空间布局以及时间序列上的生态设计,从空间上明确昆虫(包括害虫、天敌、传粉昆虫、分解昆虫)在不同生境中的转移扩散动态,从时间上掌握昆虫在不同寄主植物与非作物生境上的演替过程,从技术上着重发挥有利于昆虫的传粉功能、生物控害功能和分解功能的综合措施,在研究方法上突出使用稳定同位素、生态能量学、化学生态学等定量分析手段,研究景观区域内中"植物-昆虫"互作过程及其生态调控措施的作用,寻求不同时空条件下控害保益的关键措施,设计和组装出维持多功能的农田景观昆虫生态调控技术体系,创造有利于天敌控害、蜜蜂传粉、土壤分解的环境条件,以发挥昆虫类群在农田景观中最大的生态服务功能。  相似文献   

2.
昆虫肠道的宏基因组学:微生物大数据的新疆界   总被引:2,自引:1,他引:1  
曹乐  宁康 《微生物学报》2018,58(6):964-984
微生物作为自然界中普遍存在的生命体,通常以"微生物群落"的形式共存。这些物种相互协作适应环境变化的同时,也对环境产生了长期而深刻的影响。随着人类对于微生物了解的深入,微生物群落基础研究及其在健康和环境等领域的应用研究日益重要。昆虫肠道内存在种类繁多、数量庞大的微生物,一方面,这些肠道微生物种群结构的多样性与昆虫种类、龄期、消化道形式、食物的来源、环境等都息息相关。另一方面,这些菌群也对宿主的一些生理活动有着一定的影响。随着高通量测序技术、组学技术的发展,昆虫肠道宏基因组大数据挖掘和应用已经成为研究热点,极大地推动人类微生物资源利用的能力。本文概述了昆虫肠道微生物宏基因组学的发展现状和发展趋势,特别是肠道宏基因组学大数据的挖掘工具和应用,以及现阶段昆虫肠道宏基因组学的研究进展、应用、优势和瓶颈,并对今后昆虫肠道微生物组大数据研究方向进行展望。  相似文献   

3.
植食性昆虫对植物的反防御机制   总被引:9,自引:0,他引:9  
本文综述了植食性昆虫对植物的反防御机制.一方面,植食性昆虫可通过其快速进化的寄主选择适应性,改变取食策略,调节生长发育的节律,以及规避自然天敌等抑制、逃避或改变植物的防御,即行为防御机制;另一方面,植食性昆虫可适应植物蛋白酶抑制剂、逃避植物防御伤信号、解毒植物次生物质,以及抑制植物阻塞反应来对植物防御进行反防御,即生理和生化防御机制.其中,昆虫抑制植物伤信号,防止植物阻塞反应是反防御机制的研究热点.昆虫反防御的研究有助于提高对昆虫-植物间协同进化关系的认识,并为害虫治理和抗虫植物的培育提供新的思路.  相似文献   

4.
Small RNAs(s RNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and s RNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of s RNAs,RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of s RNAs in plant defense, bringing in the opportunity to utilize s RNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of s RNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction,and the application of s RNAs in disease and insect herbivore control.  相似文献   

5.
翟启慧 《昆虫学报》1989,32(3):365-375
重组DNA技术即基因工程,亦为人们称做基因克隆或基因操作。重组DNA技术已被应用于昆虫学的基础研究和应用研究中。本文首先对重组DNA技术及基因转移技术(在昆虫学研究中与重组DNA技术配合应用的重要手段)作一简述,然后着重介绍这些技术在昆虫学研究中的应用概况。 重组DNA技术 重组DNA技术就是将DNA从细胞中分离出来,切割成片段,与载体DNA连接,形成重组DNA分子,然后导入宿主细胞,进行复制。  相似文献   

6.
Abstract 1 The distribution and dynamics of insect populations in cities is poorly understood. One approach to address this question is to explore the permeability of the urban habitat to species from surrounding rural areas, which can serve as reservoirs in source‐sink dynamics. 2 Here, we present data on the distribution of the forest insect pest of spruce, Ips typographus (Coleoptera, Scolytidae), along two axes entering the city of Brussels (Belgium) from the south‐east and to the town centre. 3 The insect was caught everywhere along these transects, even in heavily urbanized surroundings, and sometimes in relatively high numbers. The catches were highest near the middle of the transects and lower at both ends of them. 4 This pattern was associated, on the one hand, with an urbanization gradient with the numbers of flying individuals increasing with the distance from the city centre and, on the other hand, with lower catches at the periphery of the city where a high proportion of broadleaved trees may have disrupted the response to aggregation pheromones. 5 In addition to the probable rural origin of the beetles, high catches at the Port of Brussels indicated that some of the insects might be of foreign origin and enter the city with imported timber, highlighting a pathway for unintentional introductions of organisms, including potentially invasive species.  相似文献   

7.
1. Herbivorous insects can be classified into several trophic guilds with different levels of specialisation on their host plants, which may influence the topological structure of their trophic networks. The present study tested the hypothesis that the structure of plant–herbivore networks differs between guilds of galling, sucking, and chewing insects. 2. Six areas of Neotropical savannas were studied in two localities in the North of the state of Minas Gerais, Brazil. In each area, interactions between plant and insect species were used to build networks for different guilds. 3. In total, 18 plant–herbivore networks were built, comprising 317 insect morphospecies, 50 plant species, and 489 distinct interactions. The networks were characterised using species richness and different network topological measures (connectance, modularity, nestedness, and specialisation). 4. The results obtained showed no difference in species richness, network size, and connectance between distinct insect herbivore guilds. However, it was found that modularity was higher for exophagous than galling insect networks and nestedness was higher for chewers than for other guilds. On the other hand, galling insect networks showed higher specialisation than exophagous insect networks, and sucking insect networks were more specialised than chewing insect networks. 5. The findings of the present study indicate that, although species richness did not differ between insect guilds of herbivores in Neotropical savannas, the topological structure of networks is sensitive to biological and ecological differences between these herbivore groups. The present study stands out as the first to systematically compare the network structure of different herbivore guilds in Neotropical savannas.  相似文献   

8.
Y Xiao  Q Wang  M Erb  TC Turlings  L Ge  L Hu  J Li  X Han  T Zhang  J Lu  G Zhang  Y Lou  J Penuelas 《Ecology letters》2012,15(10):1130-1139
In response to insect attack, plants release complex blends of volatile compounds. These volatiles serve as foraging cues for herbivores, predators and parasitoids, leading to plant-mediated interactions within and between trophic levels. Hence, plant volatiles may be important determinants of insect community composition. To test this, we created rice lines that are impaired in the emission of two major signals, S-linalool and (E)-β-caryophyllene. We found that inducible S-linalool attracted predators and parasitoids as well as chewing herbivores, but repelled the rice brown planthopper Nilaparvata lugens, a major pest. The constitutively produced (E)-β-caryophyllene on the other hand attracted both parasitoids and planthoppers, resulting in an increased herbivore load. Thus, silencing either signal resulted in specific insect assemblages in the field, highlighting the importance of plant volatiles in determining insect community structures. Moreover, the results imply that the manipulation of volatile emissions in crops has great potential for the control of pest populations.  相似文献   

9.
The fall‐webworm (FWW), Hyphantria cunea, is a highly polyphagous insect pest that is native to North America and distributed in different countries around the world. To manage this insect pest, various control methods have been independently evaluated in the invaded areas. Some of the control methods have been limited to the laboratory and need further study to verify their effectiveness in the field. On the other hand, currently, integrated pest management (IPM) has become a promising ecofriendly insect pest management option to reduce the adverse effect of insecticides on the environment. The development of an IPM for an insect pest must combine different management options in a compatible and applicable manner. In the native areas of the insect pests, there are some recommended management options. However, to date, there is no IPM for the management of the FWW in the newly invaded areas. Therefore, to develop an IPM for this insect pest, compilation of effective management option information is the first step. Thus, believing in the contribution of an IPM to the established management strategies, the chemical, biological, natural enemy, sex pheromone, and molecular studies regarding this insect were reviewed and potential future research areas were delineated in this review study. Therefore, using the currently existing management options, IPM development for this insect pest should be the subject of future research in the newly invaded areas.  相似文献   

10.
The interrelationship of the host-virus-environment is of critical importance in determining the amount of virus production per insect and its consequences in the overall infection process in insect community. Lower temperature inhibits the virus replication and thus infection does not persist into the system. On the other hand, virus production per insect increases with temperature increase within certain limit, and this increase of virus production brings some unforeseen consequences in the infection dynamics in pest control. We deal the problem by applying non-vulnerability concept on the mathematical model of viral infection that linked up with the temperature-viral developmental model. Using Lyapunov-like function, we determine a range of temperature and show that the system would become endemic and remain in stable situation if temperature could be maintained in this prescribed range, whereas that range depends on other parameters of the system.  相似文献   

11.
Large-scale digitization of museum specimens, particularly of insect collections, is becoming commonplace. Imaging increases the accessibility of collections and decreases the need to handle individual, often fragile, specimens. Another potential advantage of digitization is to make it easier to conduct morphometric analyses, but the accuracy of such methods needs to be tested. Here we compare morphometric measurements of scanned images of dragonfly wings to those obtained using other, more traditional, methods. We assume that the destructive method of removing and slide-mounting wings provides the most accurate method of measurement because it eliminates error due to wing curvature. We show that, for dragonfly wings, hand measurements of pinned specimens and digital measurements of scanned images are equally accurate relative to slide-mounted hand measurements. Since destructive slide-mounting is unsuitable for museum collections, and there is a risk of damage when hand measuring fragile pinned specimens, we suggest that the use of scanned images may also be an appropriate method to collect morphometric data from other collected insect species.  相似文献   

12.
The femoral chordotonal organ in orthopterans signals proprioceptive sensory information concerning the femur-tibia joint to the central nervous system. In the stick insect, 80 out of 500 afferents sense tibial position, velocity, or acceleration. It has been assumed that the other sensory cells in the chordotonal organ would serve as vibration detectors. Extracellular recordings from the femoral chordotonal organ nerve in fact revealed a sensitivity of the sense organ for vibrations with frequencies ranging from 10 Hz to 4 kHz, with a maximum sensitivity between 200 and 800 Hz. Single vibration-sensitive afferents responded to the same range of frequencies. Their spike activity depended on acceleration amplitude and displacement amplitude of the vibration stimulus. Additionally, 80% of the vibration-sensitive afferents received indirect presynaptic inputs from themselves or from other afferents of the femoral chordotonal organ, the amplitude of which depended on stimulus frequency and displacement amplitude. They were associated with a decrease of input resistance in the afferent terminal. From the present investigation we conclude that the femoral chordotonal organ of the stick insect is a bifunctional sensory organ that, on the one hand, measures position and movement of the tibia and, on the other hand, detects vibration of the tibia. Accepted: 6 November 1998  相似文献   

13.
The sterile insect technique (SIT) is a method of eradicating insects by releasing mass-reared sterilized males into fields to reduce the hatchability of eggs laid by wild females that have mated with the sterile males. SIT requires mass-production of the target insect, and maintenance of the quality of the mass-reared insects. The most important factor is successful mating between wild females and sterile males because SIT depends on their synchronized copulation. Therefore, understanding the mating systems and fertilization processes of target insects is prerequisite. Insect behavior often has circadian rhythms that are controlled by a biological clock. However, very few studies of relationships between sterile insect quality and circadian rhythm have been performed compared with the amount of research on the mating ability of target insects. The timing of male copulation attempts with receptivity of females is key to successful mating between released males and wild females. Therefore, we should focus on the mechanisms controlling the timing of mating in target insects. On the other hand, in biological control projects, precise timing of the release of natural enemies to attack pest species is required because behavior of pests and control agents are affected by their circadian rhythms. Involving both chronobiologists and applied entomologists might produce novel ideas for sterile insect quality control by synchronized sex between mass-reared and wild flies, and for biological control agent quality by matching timing in activity between predator activity and prey behavior. Control of the biological clocks in sterile insects or biological control agents is required for advanced quality control of rearing insects.  相似文献   

14.
Flowers of Chamaenerion angustifolium, Geranium palustre and G. pratense are visited by more than 100 insect species. For all plants the spectrum of visitors is similar. However the role of insects species in pollination is different and depends on the stamen and stigma length, flexibility of pedicle and feeding behaviour of insect inside flower. The possibility to take and to transport pollen grains usually increase with the size of insect. The nature of this correlation is determined by stamen and stigma length. Pollinators of G. palustre with short stamens and stigmas are smaller than those of Ch. angustifolium and G. pratense. On the other hand, more flexible pedicle of G. palustre prevent the flowers from visits of big insects. Three plants studied by the authors are not equally attractive for different insect groups. Dense in fluorescence of Ch. angustifolium and G. pratense that usually are lifter under the grass are very attractive for foraging social insects (honey bee, bumblebee). Flies avoid long distance travelling and prefer single flowers located not far from each other. For instance G. palustre is more attractive for flies not for social bees. It is pollinated mainly by flies and solitary bees with average weight of 10-70 mg. The main pollinators of Ch. angustifolium and G. pratense are honey bees, bumblebees and wasps with average mass exceeding 70 mg.  相似文献   

15.
Inclusive fitness theory has been very successful in predicting and explaining much of the observed variation in the reproductive characteristics of insect societies. For example, the theory correctly predicts sex-ratio biasing by workers in relation to the queen''s mating frequency. However, within an insect society there are typically multiple reproductive optima, each corresponding to the interest of different individual(s) or parties of interest. When multiple optima occur, which party''s interests prevail? Presumably, the interests of the party with the greatest ''power''; the ability to do or act. This article focuses on factors that influence power over colony reproduction. In particular, we seek to identify the principles that may cause different parties of interest to have greater or lesser power. In doing this, we discuss power from two different angles. On the one hand, we discuss general factors based upon non-idiosyncratic biological features (e.g. information, access to and ability to process food) that are likely to be important to all social Hymenoptera. On the other hand, we discuss idiosyncratic factors that depend upon the biology of a taxon at any hierarchical level. We propose that a better understanding of the diversity of reproductive characteristics of insect societies will come from combining inclusive fitness theory with a wide range of other factors that affect relative power in a conflict situation.  相似文献   

16.
Insect aspartate 1-decarboxylase (ADC) catalyzes the decarboxylation of aspartate to β-alanine. Insect ADC proteins share high sequence identity to mammalian cysteine sulfinic acid decarboxylase (CSADC), but there have been no reports indicating any CSADC activity in insect ADC or any ADC activity in mammalian CSADC. Substrate screening of Aedes aegypti ADC (AeADC), however, demonstrates that other than its activity to aspartate, the mosquito enzyme catalyzes the decarboxylation of cysteine sulfinic acid and cysteic acid as efficiently as those of mammalian CSADC under the same testing conditions. Further analysis of Drosophila melanogaster ADC also demonstrated its CSADC activity, suggesting that all insect ADC likely has CSADC activity. This represents the first identification of CSADC activity of insect ADC. On the other hand, HuCSADC displayed no detectable activity to aspartate. Homology modeling of AeADC and substrate docking suggest that residue Q377, localized at the active site of AeADC, could better interact with aspartate through hydrogen bonding, which may play a role in aspartate selectivity. A leucine residue in mammalian CSADC occupies the same position. A mutation at position 377 from glutamine to leucine in AeADC diminished its decarboxylation activity to aspartate with no major effect on its CSADC activity. Comparison of insect ADC sequences revealed that Q377 is stringently conserved among the available insect ADC sequences. Our data clearly established the CSADC activity of mosquito and Drosophila ADC and revealed the primary role Q377 plays in aspartate selectivity in insect ADC.  相似文献   

17.
Specializing on host plants with toxic secondary compounds enforces specific adaptation in insect herbivores. In this review, we focus on two compound classes, iridoid glycosides and cardenolides, which can be found in the food plants of a large number of insect species that display various degrees of adaptation to them. These secondary compounds have very different modes of action: Iridoid glycosides are usually activated in the gut of the herbivores by β-glucosidases that may either stem from the food plant or be present in the gut as standard digestive enzymes. Upon cleaving, the unstable aglycone is released that unspecifically acts by crosslinking proteins and inhibiting enzymes. Cardenolides, on the other hand, are highly specific inhibitors of an essential ion carrier, the sodium pump. In insects exposed to both kinds of toxins, carriers either enabling the safe storage of the compounds away from the activating enzymes or excluding the toxins from sensitive tissues, play an important role that deserves further analysis. To avoid toxicity of iridoid glycosides, repression of activating enzymes emerges as a possible alternative strategy. Cardenolides, on the other hand, may lose their toxicity if their target site is modified and this strategy has evolved multiple times independently in cardenolide-adapted insects.  相似文献   

18.
Orientation mechanism of the glacier midge (Chironomidae;Diamesa sp.) was studied in a Himalayan glacier (Yala glacier) in Nepal. This insect, a newly found cold tolerant chironomid characterized by reduced wings and antennae, is unable to fly, and is found on the surface of the glacier and in small cavities beneath it. The larvae grow in the melt-water drainage channels under the ice and feed on blue-green algae and bacteria growing there. The insect is the first to be found which spends its entire life cycle in the snow and ice of a glacier: the coldest insect habitat ever recorded. Female adults have a very long life span and migrate toward the upper part of the glacier by walking. They walk straight by means of a sun-compass; the direction of which could be altered by changing the apparent position of the sun with a hand mirror. Field data strongly suggested that the direction of their walk was corrected by some information on the slope direction. They seemed to assess the slope direction during walking straight by means of sun-compass. The migration is thought to be a kind of upstream migration well known in stream insects or that for over wintering.  相似文献   

19.
《Journal of Asia》2019,22(3):868-873
Alternative insect pest control methods are necessary for efficient pest management with reduced dependency on pesticides. Here, we report the biological responses of several insect species to, and the insecticidal efficacy of, reactive oxygen species (ROS) generated using atmospheric-pressure plasma jets. Plasma-based organism evaluation equipment (PBOEE) consisting of a plasma-generating acrylic chamber, plasma-maintaining acrylic chamber, and plasma efficacy evaluation container was developed. The PBOEE system enabled determination of the insecticidal efficacy of ROS free from the adverse effects of high temperature; moreover, four different exposures could be achieved within one run. The biological responses of five major insect pests (Aphis gossypii, Bemisia tabaci, Helicoverpa armigera, Tetranychus kanzawai, and Thrips palmi) were assessed, with a focus on knockdown time, recovery time, and median lethal time (LT50). With short-term exposure (< 3 min), B. tabaci showed the fastest knockdown time (38.4 ± 2.7 s) and the slowest recovery time (699 ± 133 s), and no mortality was noted in any of the five species. On the other hand, with long-term exposure (< 21 min), insecticidal efficacy was observed in B. tabaci and T. palmi, which showed LT50 values of 6.3 and 9.6 min, respectively. The PBOEE system can be used to determine the optimal exposure time for evaluating the insecticidal efficacy of plasma against insect pests, and plasma can be used for future control of some insect pests.  相似文献   

20.
The role of the coreceptor Orco in insect olfactory transduction   总被引:1,自引:0,他引:1  
Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo—as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR–Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号