首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although whole‐genome sequencing is becoming more accessible and feasible for nonmodel organisms, microsatellites have remained the markers of choice for various population and conservation genetic studies. However, the criteria for choosing microsatellites are still controversial due to ascertainment bias that may be introduced into the genetic inference. An empirical study of red deer (Cervus elaphus) populations, in which cross‐specific and species‐specific microsatellites developed through pyrosequencing of enriched libraries, was performed for this study. Two different strategies were used to select the species‐specific panels: randomly vs. highly polymorphic markers. The results suggest that reliable and accurate estimations of genetic diversity can be obtained using random microsatellites distributed throughout the genome. In addition, the results reinforce previous evidence that selecting the most polymorphic markers leads to an ascertainment bias in estimates of genetic diversity, when compared with randomly selected microsatellites. Analyses of population differentiation and clustering seem less influenced by the approach of microsatellite selection, whereas assigning individuals to populations might be affected by a random selection of a small number of microsatellites. Individual multilocus heterozygosity measures produced various discordant results, which in turn had impacts on the heterozygosity‐fitness correlation test. Finally, we argue that picking the appropriate microsatellite set should primarily take into account the ecological and evolutionary questions studied. Selecting the most polymorphic markers will generally overestimate genetic diversity parameters, leading to misinterpretations of the real genetic diversity, which is particularly important in managed and threatened populations.  相似文献   

2.
Centaurea corymbosa Pourret (Asteraceae) is a narrow endemic species known only from six populations located in a 3-km2 area in the south of France. Earlier field experiments have suggested that pollen and seed dispersal were highly restricted within and among populations. Consistent with the field results, populations were highly differentiated for five allozyme loci and among-population variation fitted an isolation-by-distance model. In the present study, we investigated the genetic structure of C. corymbosa using six microsatellite loci. As with allozymes, microsatellites revealed no within-population structure and a large differentiation among populations. However, allozyme loci were less powerful than microsatellites in detecting the extent of gene flow assessed by assignment tests. The patterns of structuration greatly varied among loci for both types of marker; we suggest that differences in single-locus pattern could mainly be an effect of stochastic variation for allozymes and an effect of variation in mutation rate for microsatellites. In contrast to the multilocus results, the two most polymorphic microsatellite loci did not show any isolation-by-distance pattern. Our results suggest that highly variable loci might not always be the best suited markers to quantify levels of gene flow among populations.  相似文献   

3.
The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction‐site‐associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as FST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half‐ and full‐siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual‐level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual‐level genotype information, such as quantifying relatedness and individual‐level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.  相似文献   

4.
Polymorphic genetic markers and methods for DNA sampling in the field are the basic requirements for studies on population and conservation genetics of wildMacaca cyclopis. In this paper we screened microsatellites for their polymorphism and accessed the validity in paternity identification and gene typing of DNA samples from various sources. Among the 36 primer sets tested, 21 are polymorphic with an average observed heterozygosity 0.56. All theeight loci examined for a parent-offspring triad followed Medelian inheritance. Application of the two most polymorphic loci in paternity identification of a daptive group showed that the top-ranking male sired all the juveniles. DNA samples from wound and menstrual bleeding, or from ejaculates and hairs produced concordant microsatellite banding patterns for specific individuals. The success in DNA extraction from samples collected low-invasively and the polymorphic loci screened in this study can be applied in future studies on population and conservation genetics of natural primate populations.  相似文献   

5.
The genetic diversity of anadromous and freshwater Atlantic salmon ( Salmo salar ) populations from north-west Russia and other north European locations was compared using microsatellite variation to evaluate the importance of anadromous migration, population size and population glacial history in determining population genetic diversity and divergence. In anadromous Atlantic salmon populations, the level of genetic diversity was significantly higher and the level of population divergence was significantly lower than among the freshwater Atlantic salmon populations, even after correcting for differences in stock size. The phylogeographic origin of the populations also had a significant effect on the genetic diversity characteristics of populations: anadromous populations from the basins of the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than anadromous populations from the Baltic Sea basin. Among the freshwater populations, the result was the opposite: the Baltic freshwater populations were more variable. The results of this study imply that differences in the level of long-term gene flow between freshwater populations and anadromous populations have led to different levels of genetic diversity, which was also evidenced by the hierarchical analysis of molecular variance. Furthermore, the results emphasize the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash. Hence, high conservation status is warranted in order to ensure the long-term survival of the limited number of European populations with this life-history strategy.  相似文献   

6.
Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.  相似文献   

7.
Alewife, Alosa pseudoharengus, populations occur in two discrete life-history variants, an anadromous form and a landlocked (freshwater resident) form. Landlocked populations display a consistent pattern of life-history divergence from anadromous populations, including earlier age at maturity, smaller adult body size, and reduced fecundity. In Connecticut (USA), dams constructed on coastal streams separate anadromous spawning runs from lake-resident landlocked populations. Here, we used sequence data from the mtDNA control region and allele frequency data from five microsatellite loci to ask whether coastal Connecticut landlocked alewife populations are independently evolved from anadromous populations or whether they share a common freshwater ancestor. We then used microsatellite data to estimate the timing of the divergence between anadromous and landlocked populations. Finally, we examined anadromous and landlocked populations for divergence in foraging morphology and used divergence time estimates to calculate the rate of evolution for foraging traits. Our results indicate that landlocked populations have evolved multiple times independently. Tests of population divergence and estimates of gene flow show that landlocked populations are genetically isolated, whereas anadromous populations exchange genes. These results support a 'phylogenetic raceme' model of landlocked alewife divergence, with anadromous populations forming an ancestral core from which landlocked populations independently diverged. Divergence time estimates suggest that landlocked populations diverged from a common anadromous ancestor no longer than 5000 years ago and perhaps as recently as 300 years ago, depending on the microsatellite mutation rate assumed. Examination of foraging traits reveals landlocked populations to have significantly narrower gapes and smaller gill raker spacings than anadromous populations, suggesting that they are adapted to foraging on smaller prey items. Estimates of evolutionary rates (in haldanes) indicate rapid evolution of foraging traits, possibly in response to changes in available resources.  相似文献   

8.
There has been very little effort to understand genetic divergence between wild and hatchery populations of masu salmon (Oncorhynchus masou). In this study, we used mitochondrial (mt) NADH dehydrogenase subunit 5 gene (ND5) and six polymorphic nuclear microsatellite DNA loci to compare the genetic variability in three hatchery broodstocks of masu salmon with the variability in eight putative wild masu populations sampled in five rivers including one known source river for the hatchery broodstocks. Both ND5 and microsatellites showed no significant genetic divergence (based on FST estimates) between four annual collections from the source river population, suggesting no change in genetic diversity over this time period. The FST estimates, an analysis of molecular variance (AMOVA), and a neighbor-joining tree using both DNA markers suggested significant differentiation between the three hatchery and all eight putative wild populations. We conclude that genetic diversity of hatchery populations are low relative to putative wild populations of masu salmon, and we discuss the implications for conservation and fisheries management in Hokkaido.  相似文献   

9.
Genetic variation in nine wild brown trout (Salmo trutta L.) populations was studied by means of allozyme and microsatellite markers. All brown trout populations were clearly separated into two clusters that represented the Sil and Duero basins. Although both markers revealed a strong genetic differentiation between basins, microsatellite loci resulted much more accurate when population structure at the intrabasin level was analysed. Also pairwise multilocus FST estimates and assignment tests of individual fish to the set of sampled populations demonstrated a much higher efficiency of microsatellites compared to allozymes. The analysis of both markers provides new insights in defining the conservation units at this local area and confirms the existence of a recognized sub-lineage in the Duero basin. The management implications of these findings are discussed and changes in trout release activity are recommended to avoid mixing of trout gene pools mainly in the Sil basin.  相似文献   

10.
A comparative study between microsatellite and allozyme markers was conducted on the genetic structure and mating system in natural populations of Euterpe edulis Mart. Three cohorts, including seedlings, saplings, and adults, were examined in 4 populations using 10 allozyme loci and 10 microsatellite loci. As expected, microsatellite markers had a much higher degree of polymorphism than allozymes, but estimates of multilocus outcrossing rate ( = 1.00), as well as estimates of genetic structure (F(IS), G(ST)), were similar for the 2 sets of markers. Estimates of R(ST), for microsatellites, were higher than those of G(ST), but results of both statistics revealed a close agreement for the genetic structure of the species. This study provides support for the important conclusion that allozymes are still useful and reliable markers to estimate population genetic parameters. Effects of sample size on estimates from hypervariable loci are also discussed in this paper.  相似文献   

11.
Microsatellites can be misleading: an empirical and simulation study   总被引:10,自引:0,他引:10  
Abstract. It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew ( Sorex araneus ), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F - and R -statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F -statististics and from deviations from a single-step mutation model for R -statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.  相似文献   

12.
Uncovering the correct phylogeny of closely related species requires analysis of multiple gene genealogies or, alternatively, genealogies inferred from the multiple alleles found at highly polymorphic loci, such as microsatellites. However, a concern in using microsatellites is that constraints on allele sizes may occur, resulting in homoplasious distributions of alleles, leading to incorrect phylogenies. Seven microsatellites from the pathogenic fungus Coccidioides immitis were sequenced for 20 clinical isolates chosen to represent the known genetic diversity of the pathogen. An organismal phylogeny for C. immitis was inferred from microsatellite-flanking sequence polymorphisms and other restriction fragment length polymorphism-containing loci. Two microsatellite genetic distances were then used to determine phylogenies for C. immitis, and the trees found by these three methods were compared. Congruence between the organismal and microsatellite phylogenies occurred when microsatellite distances were based on simple allele frequency data. However, complex mutation events at some loci made distances based on stepwise mutation models unreliable. Estimates of times of divergence for the two species of C. immitis based on microsatellites were significantly lower than those calculated from flanking sequence, most likely due to constraints on microsatellite allele sizes. Flanking-sequence insertions/deletions significantly decreased the accuracy of genealogical information inferred from microsatellite loci and caused interspecific length homoplasies at one of the seven loci. Our analysis shows that microsatellites are useful phylogenetic markers, although care should be taken to choose loci with appropriate flanking sequences when they are intended for use in evolutionary studies.  相似文献   

13.
Anopheles stephensi is one of the major vectors of malaria in the Middle East and Indo-Pakistan subcontinent. Understanding the population genetic structure of malaria mosquitoes is important for developing adequate and successful vector control strategies. Commonly used markers for inferring anopheline taxonomic and population status include microsatellites and chromosomal inversions. Knowledge about chromosomal locations of microsatellite markers with respect to polymorphic inversions could be useful for better understanding a genetic structure of natural populations. However, fragments with microsatellites used in population genetic studies are usually too short for successful labeling and hybridization with chromosomes. We designed new primers for amplification of microsatellite loci identified in the A. stephensi genome sequenced with next-generation technologies. Twelve microsatellites were mapped to polytene chromosomes from ovarian nurse cells of A. stephensi using fluorescent in situ hybridization. All microsatellites hybridized to unique locations on autosomes, and 7 of them localized to the largest arm 2R. Ten microsatellites were mapped inside the previously described polymorphic chromosomal inversions, including 4 loci located inside the widespread inversion 2Rb. We analyzed microsatellite-based population genetic data available for A. stephensi in light of our mapping results. This study demonstrates that the chromosomal position of microsatellites may affect estimates of population genetic parameters and highlights the importance of developing physical maps for nonmodel organisms.  相似文献   

14.
1. The great silver water beetle Hydrophilus piceus is one of the largest aquatic insects in Europe. In Britain it is rare and endangered, and confined to a small number of low-lying marshes. Very little is known about the beetle populations in any of these areas, or the connectivity between them.
2. To investigate the population structure of H. piceus in Britain, four polymorphic microsatellite loci were identified and characterized. The genome of this beetle seems to have few microsatellites but contains a high proportion of a larger repeated sequence.
3. All six of the main British populations (Somerset, Lewes, Pevensey, Romney, North Kent and Norfolk) showed substantial genetic diversity at the microsatellite loci. However, estimates of effective population size at one site (Pevensey) were remarkably low, at <10 adults for the period 2004–05.
4. Most of the genetic diversity was partitioned within rather than among the populations, although there was, nevertheless, significant genetic sub-structuring. Almost all population pairwise F st estimates were significantly different from zero, and there was a clear isolation-by-distance effect. Assignment tests and cluster analyses demonstrated interpopulation relationships largely consistent with their geographical separations.
5. Hydrophilus disperses by flight, and records from moth traps indicated that there was no month in which the beetles never flew, but that flight activity was highest in the spring.
6. The genetic data highlight the need to maintain or regenerate habitat connectivity within flying distance for H. piceus , and to sustain large areas of suitable breeding marshes.  相似文献   

15.
Amplified fragment length polymorphisms (AFLPs) and microsatellite markers were used to examine genetic variation and divergence in 4 selected strains (DBH, NEH, FMF, and CTS) and 1 wild population (DBW) of the eastern oyster Crassostrea virginica Gmelin. Eighty-six AFLP markers (from 3 primer pairs) and 5 microsatellite loci were used for the analysis of 30 oysters from each of the 5 populations. Microsatellite loci were considerably more variable than AFLPs. The observed heterozygosity ranged from 0.560 to 0.640 across populations for microsatellites, and from 0.186 to 0.207 for AFLPs. Both Fst and PT of microsatellite data and PT statistics of AFLP data revealed significant divergence between all pairs of populations. There was no significant reduction in heterozygosity in all 4 selected strains; however, the number of alleles per locus was considerably lower in the selected strains than in the wild population. Two strains subjected to long-term selection for disease resistance shared frequency shifts at a few loci, which deserve further analysis to determine if they are linked to disease-resistance genes.  相似文献   

16.
Previous analysis of mitochondrial DNA polymorphism in the native range of the European rabbit (Oryctolagus cuniculus) demonstrated the occurrence of two highly divergent (2 Myr) maternal lineages with a well-defined geographical distribution. Analysis of both protein and immunoglobulin polymorphisms are highly concordant with this pattern of differentiation. However, the present analysis of nine polymorphic microsatellite loci (with a total of 169 alleles) in 24 wild populations reveals severe allele-size homoplasy which vastly underestimates divergence between the main groups of populations in Iberia. Nonetheless, when applied to more recent historical phenomena, this same data set not only confirms the occurrence of a strong bottleneck associated with the colonization of Mediterranean France but also suggests a two-step dispersal scenario that began with gene flow from northern Spain through the Pyrenean barrier and subsequent range expansion into northern France. The strength and appropriateness of applying microsatellites to more recent evolutionary questions is highlighted by the fact that both mtDNA and protein markers lacked the allelic diversity necessary to properly evaluate the colonization of France. The well-documented natural history of European rabbit populations provides an unusually comprehensive framework within which one can appraise the advantages and limitations of microsatellite markers in revealing patterns of genetic differentiation that have occurred across varying degrees of evolutionary time. The degree of size homoplasy presented in our data should serve as a warning to those drawing conclusions from microsatellite data sets which lack a set of complementary comparative markers, or involve long periods of evolutionary history, even within a single species.  相似文献   

17.
郑春艳  杨帆  曾玲  许益镌 《昆虫学报》2021,64(11):1328-1337
【目的】本研究旨在分离黑头酸臭蚁Tapinoma melanocephalum基因组微卫星标记,确定这些微卫星位点的多态性。【方法】使用454 GS-FLX焦磷酸测序技术开发来自中国华南陆地和岛屿的11个黑头酸臭蚁地理种群基因组微卫星位点。从随机设计的100对微卫星引物中筛选出10对引物,用于确定黑头酸臭蚁4个地理种群[东澳岛(DAD)、荷包岛(HBD)、梅州(MZ)和山咀(SJ)]10个微卫星位点的多态性,分析种群遗传多样性和种群分化。【结果】从11个黑头酸臭蚁地理种群基因组中成功开发和分离10对微卫星引物。在DAD, HBD, MZ和SJ 4个地理种群中,10个微卫星位点中7个有高多态性,这10个位点均显著偏离Hardy-Weinberg平衡;每个位点的等位基因数量(A)是3.50~9.00个,每个地理种群每个位点等位基因丰富度(AR)在1.992~12.938之间。岛屿地理种群(DAD和HBD)的AR和预期杂合度(HE)与大陆地理种群(MZ和SJ)的相比差异不显著。4个地理种群均显示高水平遗传分化(FST=0.15969);HBD和MZ种群与其他配对地理种群相比,遗传分化较高(FST=0.185),基因流较低,说明这两个种群基因流被限制。此外,遗传变异来自种群内个体之间。【结论】筛选新的微卫星位点能够为研究黑头酸臭蚁种群结构和繁殖结构提供有效工具,以深入了解其传播机制。  相似文献   

18.
Many salmonid fish populations have anadromous (i.e. migratory) and nonanadromous individuals co‐existing in sympatry. The nonanadromous individuals, frequently males, mature at a much smaller size in freshwater without undergoing marine migrations and often successfully fertilize many eggs laid by anadromous females. Because these small males do not recruit to fisheries, they are often not regarded in high esteem by fishers. In this issue of Molecular Ecology, Johnstone et al. ( 2013 ) demonstrate that by substantially contributing to reproduction, such males help maintain genetic diversity in a declining population of Atlantic salmon (Salmo salar). Their results show that estimates of effective population size (Ne), obtained by counting the number of anadromous adults returning from sea and correcting for unequal sex ratios, are lower than estimates generated from genetic markers. Many mechanisms are expected to reduce Ne below the adult census population size (N); the opposite pattern of NN observed by Johnstone et al. ( 2013 ) is difficult to explain unless the reproductive effort of nonanadromous males is accounted for. The results have important implications for the conservation of small populations and highlight the challenges of relating Ne to N in organisms with complex life histories.  相似文献   

19.
Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.  相似文献   

20.
The distribution of the genetic variation within and among natural populations of A. ANGUSTIFOLIA growing in different regions in Brazil was assessed at microsatellite and AFLP markers. Both markers revealed high gene diversity ( H = 0.65; AR = 9.1 for microsatellites and H = 0.27; P = 77.8 % for AFLPs), moderate overall differentiation ( RST = 0.13 for microsatellites and FST = 0.10 for AFLPs), but high divergence of the northernmost, geographically isolated population. In a Bayesian analysis, microsatellite data suggested population structure at two levels: at K = 2 and at K = 3 in agreement to the geographical distribution of populations. This result was confirmed by the UPGMA dendrogram based on microsatellite data (bootstrap support > 95 %). Non-hierarchical AMOVA revealed high variation among populations from different A POSTERIORI defined geographical groups. The genetic distance between sample locations increased with geographical distance for microsatellites ( R = 0.62; P = 0.003) and AFLPs ( R = 0.32; P = 0.09). This pattern of population differentiation may be correlated with population history such as geographical isolation and postglacial colonization of highlands. Implications of the population genetic structure for the conservation of genetic resources are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号