首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MicroRNAs (miRNAs) are a specialized class of small silencing RNAs that regulate gene expression in eukaryotes. In plants, miRNAs negatively regulate target mRNAs containing a highly complementary sequence by either mRNA cleavage or translational repression. As a model plant to study fleshy fruit ripening, miRNA studies in tomato have made great progress recently. MiRNAs were predicted to be involved in nearly all biological processes in tomato, particularly development, differentiation, and biotic and abiotic stress responses. Surprisingly, several miRNAs were verified to be involved in tomato fruit ripening and senescence. Recent studies suggest that miRNAs are related to host-virus interactions, which raises the possibility that miRNAs can be used as diagnostic markers for response to virus infection in tomato plants. In this review, we summarize our current knowledge systematically and advance future directions for miRNA research in tomato.  相似文献   

2.
Plants feature a particularly diverse population of short (s)RNAs, the central component of all RNA silencing pathways. Next generation sequencing techniques enable deeper insights into this complex and highly conserved mechanism and allow identification and quantification of sRNAs. We employed deep sequencing to monitor the sRNAome of developing tomato fruits covering the period between closed flowers and ripened fruits by profiling sRNAs at 10 time-points. It is known that microRNAs (miRNAs) play an important role in development but very little information is available about the majority of sRNAs that are not miRNAs. Here we show distinctive patterns of sRNA expression that often coincide with stages of the developmental process such as flowering, early and late fruit maturation. Moreover, thousands of non-miRNA sRNAs are differentially expressed during fruit development and ripening. Some of these differentially expressed sRNAs derived from transposons but many derive from protein coding genes or regions that show homology to protein coding genes, several of which are known to play a role in flower and fruit development. These findings raise the possibility of a regulative role of these sRNAs during fruit onset and maturation in a crop species. We also identified six new miRNAs and experimentally validated two target mRNAs. These two mRNAs are targeted by the same miRNA but do not belong to the same gene family, which is rare for plant miRNAs. Expression pattern and putative function of these targets indicate a possible role in glutamate accumulation, which contributes to establishing the taste of the fruit.  相似文献   

3.
Virus-induced gene silencing in tomato fruit   总被引:16,自引:0,他引:16  
Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants. Here we report that either by syringe-infiltrating the tobacco rattle virus (TRV)-vector into the surface, stem or carpopodium of a tomato fruit attached to the plant or by vacuum-infiltrating into a tomato fruit detached from the plant, TRV can efficiently spread and replicate in the tomato fruit. Although VIGS can be performed in tomato fruit by all of the means mentioned above, the most effective method is to inject the TRV-vector into the carpopodium of young fruit attached to the plant about 10 days after pollination. Several reporter genes related to ethylene responses and fruit ripening, including LeCTR1 and LeEILs genes, were also successfully silenced by this method during fruit development. In addition, we found that the silencing of the LeEIN2 gene results in the suppression of tomato fruit ripening. The results of our study indicate that the application of VIGS techniques by the described methods can be successfully applied to tomato fruit and is a valuable tool for studying functions of the relevant genes during fruit developing.  相似文献   

4.
Structure and expression of an ethylene-related mRNA from tomato.   总被引:35,自引:2,他引:33  
Messenger RNAs homologous to a cDNA clone (pTOM 13) derived from a ripe-tomato-specific cDNA library are expressed during tomato fruit ripening and after the wounding of leaf and green fruit material. Both responses involve the synthesis of the hormone ethylene. Accumulation of the pTOM 13--homologous RNA during ripening is rapid and sustained, and reaches its maximum level in orange fruit. Following mechanical wounding of tomato leaves a pTOM 13--homologous RNA shows rapid induction within 30 minutes, which occurs before maximal ethylene evolution (2-3 h). This RNA also accumulates following the wounding of green tomato fruit. Northern blot analysis of poly(A)+ RNA indicates that the length of the mRNA is about 1400 nucleotides. Nucleotide sequence analysis showed the cDNA insert to contain the complete coding region of the pTOM 13 protein (33.5 kD) and an unusual 5' structure of ten dT-nucleotides. Hybridisation of the pTOM 13 cDNA insert to Southern blots of tomato DNA indicates the presence of only a small number of homologous sequences in the tomato genome.  相似文献   

5.
6.
7.
8.
9.
Targeted gene silencing using small regulatory RNAs is a widely used technique for genetic studies in plants. Artificial microRNAs are one common approach, as they have the advantage of producing just a single functional small RNA, which can be designed for high target specificity and low off-target effects. Simultaneous silencing of multiple targets with artificial microRNAs can be achieved by producing polycistronic microRNA precursors. Alternatively, specialized trans-acting short interfering RNA (tasiRNA) precursors can be designed to produce several specific tasiRNAs at once. Here we tested several artificial microRNA- and tasiRNA-based methods for multiplexed gene silencing in Solanum lycopersicum (tomato) and Nicotiana benthamiana. All analyses used transiently expressed transgenes delivered by infiltration of leaves with Agrobacterium tumefacians. Small RNA sequencing analyses revealed that many previously described approaches resulted in poor small RNA processing. The 5′-most microRNA precursor hairpins on polycistronic artificial microRNA precursors were generally processed more accurately than precursors at the 3′-end. Polycistronic artificial microRNAs where the hairpin precursors were separated by transfer RNAs had the best processing precision. Strikingly, artificial tasiRNA precursors failed to be processed in the expected phased manner in our system. These results highlight the need for further development of multiplexed artificial microRNA and tasiRNA strategies. The importance of small RNA sequencing, as opposed to single-target assays such as RNA blots or real-time polymerase chain reaction, is also discussed.  相似文献   

10.
11.
12.
13.
To date, the majority of plant small RNAs (sRNA) have been identified in rice, poplar and Arabidopsis. To identify novel tomato sRNAs potentially involved in tomato specific processes such as fruit development and/or ripening, we cloned 4,018 sRNAs from tomato fruit tissue at the mature green stage. From this pool of sRNAs, we detected tomato homologues of nine known miRNAs, including miR482; a poplar miRNA not conserved in Arabidopsis or rice. We identified three novel putative miRNAs with flanking sequence that could be folded into a stem-loop precursor structure and which accumulated as 19-24nt RNA. One of these putative miRNAs (Put-miRNA3) exhibited significantly higher expression in fruit compared with leaf tissues, indicating a specific role in fruit development processes. We also identified nine sRNAs that accumulated as 19–24nt RNA species in tomato but genome sequence was not available for these loci. None of the nine sRNAs or three putative miRNAs possessed a homologue in Arabidopsis that had a precursor with a predicted stem-loop structure or that accumulated as a sRNA species, suggesting that the 12 sRNAs we have identified in tomato may have a species specific role in this model fruit species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004.  相似文献   

15.
Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis, which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expres- sion during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition, there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.  相似文献   

16.
K. Manning 《Planta》1994,194(1):62-68
Changes in messenger RNA during the development of the strawberry (Fragaria ananassa Duch.), a non-climacteric fruit, were analysed by extracting total RNA and separating the in-vitro translated products by two-dimensional polyacrylamide gel electrophoresis. Alterations in numerous messenger RNAs accompanied fruit development between the immature green stage and the overripe stage, with prominent changes detected at or before the onset of ripening. A number of messenger RNAs undetectable in immature green fruit increased as the fruit matured and ripened. Others showed a marked decrease in advance of the ripening phase. A further group of messenger RNAs was prominent in immature and ripe fruit but absent just prior to the turning stage. Removing the achenes from a segment of the fruit accelerated anthocyanin accumulation in the de-achened portion and produced a pattern of translated polypeptides similar to normal ripe fruit. Application of the synthetic auxin 1-naphthaleneacetic acid to the de-achened receptacle produced a translation pattern similar to that in mature green fruit. These findings indicate that ripening in strawberry is associated with the expression of specific genes.  相似文献   

17.
18.
Plant genomes encode diverse small RNA classes that function in distinct gene‐silencing pathways. To elucidate the intricate regulation of microRNAs (miRNAs) and endogenous small‐interfering RNAs (siRNAs) in response to chilling injury in tomato fruit, the deep sequencing and bioinformatic methods were combined to decipher the small RNAs landscape in the control and chilling‐injured groups. Except for the known miRNAs and ta‐siRNAs, 85 novel miRNAs and 5 ta‐siRNAs members belonging to 3 TAS families (TAS5, TAS9 and TAS10) were identified, 34 putative phased small RNAs and 740 cis/trans‐natural antisense small‐interfering RNAs (nat‐siRNAs) were also found in our results which enriched the tomato small RNAs repository. A large number of genes targeted by those miRNAs and siRNAs were predicted to be involved in the chilling injury responsive process and five of them were verified via degradome sequencing. Based on the above results, a regulatory model that comprehensively reveals the relationships between the small RNAs and their targets was set up. This work provides a foundation for further study of the regulation of miRNAs and siRNAs in the plant in response to chilling injury.  相似文献   

19.
The economic importance of Solanaceae plant species is well documented, and tomato has become a model for fleshy fruit development and ripening studies. Plant microRNAs (miRNAs) are small endogenous RNAs that are involved in a variety of activities including plant development, signal transduction and protein degradation, as well as response to environment stress and pathogen invasion. Here in this study, we aimed at quantifying the expression alterations of nine miRNAs and target mRNAs in tomato flower and fruit development upon Cucumber mosaic virus (CMV) and Tomato aspermy virus infections. Three different CMV strains CMV-Fny, CMV-FnyΔ2b and CMV-Fny-satT1 were used in our investigation, and the miRNA/mRNA expression alterations were analyzed by real-time quantitative RT-PCR. The results shown the levels of several miRNA/mRNA pairs were increased upon virus infections. However, the increased level of individual miRNA differed for different virus strains, reflecting differences in severity of symptom phenotypes. The altered expression patterns of these miRNA/mRNA pairs and their predicted functions indicate the possible roles in flower and fruit development, and provide experimental data for understanding the miRNA-mediated phenotype alterations in tomato fruit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号