首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous study has shown that cholecystokinin (CCK) octapeptide (CCK-8) suppressed the binding of opioid receptors to the universal opioid agonist [3H]etorphine. In the present study, highly selective tritium-labeled agonists for the mu-[(tryrosyl-3,5-3H][D-Ala2,MePhe4,Gly-ol5]enkephalin ([3H]DAGO], delta- ([tyrosyl-3,5-3H][D-Pen2,5]enkephalin ([3H]DPDPE], and kappa- ([3H]U69,593) opioid receptors were used to clarify which type(s) of opioid receptor in rat brain homogenates is suppressed by CCK-8. In the competition experiments, CCK-8 suppressed the binding of [3H]DAGO and [3H]U69,593 but not that of [3H]DPDPE to the respective opioid receptor. This effect was blocked by the CCK antagonist proglumide at 1 mumol/L. In the saturation experiments, CCK-8 at concentrations of 0.1 nmol/L to 1 mumol/L decreased the Bmax of [3H]DAGO binding sites without affecting the KD; on the other hand, CCK-8 increased the KD of [3H]U69,593 binding without changing the Bmax. The results suggest that CCK-8 inhibits the binding of mu- and kappa-opioid receptors via the activation of CCK receptors.  相似文献   

2.
Modulation of Opioid Receptor Binding by Cis and Trans Fatty Acids   总被引:1,自引:2,他引:1  
In synaptosomal brain membranes, the addition of oleic acid (cis), elaidic acid (trans), and the cis and trans isomers of vaccenic acid, at a concentration of 0.87 mumol of lipid/mg of protein, strongly reduced the Bmax and, to a lesser degree, the binding affinity of the mu-selective opioid [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol ([3H]DAMGO). At comparable membrane content, the cis isomers of the fatty acids were more potent than their trans counterparts in inhibiting ligand binding and in decreasing membrane microviscosity, both at the membrane surface and in the core. However, trans-vacenic acid affected opioid receptor binding in spite of just marginally altering membrane microviscosity. If the receptors were uncoupled from guanine nucleotide regulatory protein, an altered inhibition profile was obtained: the impairment of KD by the fatty acids was enhanced and that of Bmax reduced. Receptor interaction of the delta-opioid [3H](D-Pen2,D-Pen5)enkephalin was modulated by lipids to a greater extent than that of [3H]DAMGO: saturable binding was abolished by both oleic and elaidic acids. The binding of [3H]naltrexone was less susceptible to inhibition by the fatty acids, particularly in the presence of sodium. In the absence of this cation, however, cis-vaccenic acid abolished the low-affinity binding component of [3H]naltrexone. These findings support the membrane model of opioid receptor sequestration depicting different ionic environments for the mu- and delta-binding sites. The results of this work show distinct modulation of different types and molecular states of opioid receptor by fatty acids through mechanisms involving membrane fluidity and specific interactions with membrane constituents.  相似文献   

3.
X Z Khawaja  I C Green 《Life sciences》1992,50(17):1273-1281
The effect of glucose on the binding characteristics of opiate receptor subtypes was investigated in brain membranes from normoglycaemic lean Aston (C57BL/6J) mice using [3H][D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO), [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) and [3H]U69,593 as selective ligands for mu, delta and kappa opiate receptors respectively. The equilibrium dissociation constants (Kd) and maximal binding capacities (Bmax) of [3H]DAMGO and [3H]DPDPE were unaltered by 20mM glucose in vitro. Similarly, [3H]U69,593 binding was not modified by increasing the concentration of glucose from 0 to 20mM (P between 0.10 and 0.05), or by the presence of 20mM fructose and of 20mM 3-O-me-glucose, a non-metabolisable sugar, in the incubation medium. The nonselective opiate ligand, [3H]diprenorphine, bound with similar affinity and binding capacity to brain membranes prepared from control and streptozotocin-diabetic Swiss (CD1) mice. The addition of 20mM glucose or of 20mM fructose in vitro induced no changes in their binding parameters. The affinity and binding capacity of [3H]U69,593 to STZ-diabetic Swiss mouse brain membranes was not significantly different to that of normoglycaemic controls; 20mM glucose in vitro had no effect on ligand binding to kappa sites in STZ-diabetic mouse brain membranes. We conclude that glucose does not interact directly with the opiate receptor to modfy it in such as way as could explain the altered sensitivity to different opioid agonists seen in obese and hyperglycaemic animal models in vivo.  相似文献   

4.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

5.
[3H]U69,593 and [3H]ethylketazocine (mu + delta suppressed) binding was measured in homogenates of guinea-pig brain. Both ligands bind with high affinity to a single class of opioid sites. The relative equilibrium dissociation constant (KD) for [3H]U69,593 is 1.15 nM, while [3H]ethylketazocine has a KD value of 0.33 nM. Their respective maximum binding capacities are 4.49 and 4.48 pmol/g of wet tissue. Various mu-selective, delta-selective, kappa-selective, and nonselective opioids were tested in competition studies against the binding of [3H]U69,593 or [3H]ethylketazocine (in the presence of mu- and delta-blockers) to measure their relative affinity. [D-Ala2, MePhe4,Gly5-ol]enkephalin (mu-selective) has low affinity (600-3000 nM) and [D-Pen2,D-Pen5]enkephalin and [D-Ser2, Leu5, Thr6]enkephalin (delta-selective) have very low affinities (greater than 20,000 nM) at the sites labelled with [3H]U69,593 or [3H]ethylketazocine. On the other hand, unlabelled U69,593, U50,488H, and tifluadom (all three kappa-selective substances) display high affinity (1-5 nM) at those sites. Nonselective opioids, such as bremazocine, levorphanol, and ethylketazocine show similar affinities at the sites labelled with [3H]U69,593 and at the sites labelled with [3H]ethylketazocine. These data indicate that [3H]U69,593 is a selective high-affinity ligand for the same sites that are labelled with [3H]ethylketazocine (in the presence of mu- and delta-blockers) and that these are kappa-sites.  相似文献   

6.
Kim KW  Kim SJ  Shin BS  Choi HY 《Life sciences》2001,68(14):1649-1656
In this study, receptor binding profiles of opioid ligands for subtypes of opioid delta-receptors were examined employing [3H]D-Pen2,D-Pen5-enkephalin ([3H]DPDPE) and [3H]Ile(5,6)-deltorphin II ([3H]Ile-Delt II) in human cerebral cortex membranes. [3H]DPDPE, a representative ligand for delta1 sites, labeled a single population of binding sites with apparent affinity constant (Kd) of 2.72 +/- 0.21 nM and maximal binding capacity (Bmax) value of 20.78 +/- 3.13 fmol/mg protein. Homologous competition curve of [3H]Ile-Delt II, a representative ligand for delta2 sites, was best fit by the one-site model (Kd = 0.82 +/- 0.07 nM). Bmax value (43.65 +/- 2.41 fmol/mg) for [3H]Ile-Delt II was significantly greater than that for [3H]DPDPE. DPDPE, [D-Ala2,D-Leu5]enkephalin (DADLE) and 7-benzylidenaltrexone (BNTX) were more potent in competing for the binding sites of [3H]DPDPE than for those of [3H]Ile-Delt II. On the other hand, deltorphin II (Delt II), [D-Ser2,Leu5,Thr6]enkephalin (DSLET), naltriben (NTB) and naltrindole (NTI) were found to be equipotent in competing for [3H]DPDPE and [3H]Ile-Delt II binding sites. These results indicate that both subtypes of opioid delta-receptors, delta1 and delta2, exist in human cerebral cortex with different ligand binding profiles.  相似文献   

7.
The present study investigated the effects of a striatal lesion induced by kainic acid on the striatal modulation of dopamine (DA) release by mu- and delta-opioid peptides. The effects of [D-Pen2,D-Pen5]-enkephalin (DPDPE) and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO), two highly selective delta- and mu-opioid agonists, respectively, were studied by microdialysis in anesthetized rats. In control animals both opioid peptides, administered locally, significantly increased extracellular DA levels. The effects of DPDPE were also observed in animals whose striatum had been previously lesioned with kainic acid. In contrast to the effects of the delta agonist, the significant increase induced by DAGO was no longer observed in lesioned animals. These results suggest that delta-opioid receptors modulating the striatal DA release, in contrast to mu receptors, are not located on neurons that may be lesioned by kainic acid.  相似文献   

8.
Kim KW  Woo RS  Kim CJ  Cheong YP  Kim JK  Kwun J  Cho KP 《Life sciences》2000,67(1):61-71
This study was undertaken to examine the receptor selectivity of Met-enkephalin-Arg6-Phe7 (MERF) employing radioreceptor binding assays in human cerebral cortex membranes, and to elucidate the responsible receptors that mediate the regulatory action of MERF on high (20 mM) K+-stimulated release of [3H]norepinephrine ([3H]-NE) in rat cortex slices. Specific binding of [3H]MERF was inhibited by DAMGO, Tyr-D-Arg-Phe-Sar(TAPS), bremazocine and ethylketocyclazocine (EKC), but not by U69,593 (U69) and DPDPE. MERF showed high affinity for specific binding sites of [3H]DAMGO. However, MERF had little influence on the specific binding of [3H]DPDPE, [3H]U69 and [3H]diprenorphine ([3H]DIP) in the presence of 1 microM each of DAMGO, DPDPE and U69. In [3H]NE release experiments using rat cortex slices, DAMGO, MERF and EKC, in order of their potency, inhibited K+-stimulated release of [3H]NE. The inhibitory effects of MERF and DAMGO were more sensitive than that of EKC to antagonism by CTAP, nor-binaltorphimine (nor-BNI) and naloxone. These results suggested that MERF possesses high affinity for mu-receptors, but not for delta-, kappa1-, and very low affinity for kappa2-receptors in human cerebral cortex membranes. Also, the inhibitory effect of MERF on the K+-stimulated release of [3H]NE appears to be mediated by mu-receptors in rat cerebral cortex slices.  相似文献   

9.
Opioid receptors have been characterized in Drosophila neural tissue. [3H]Etorphine (universal opioid ligand) bound stereospecifically, saturably, and with high affinity (KD = 8.8 +/- 1.7 nM; Bmax = 2.3 +/- 0.2 pmol/mg of protein) to Drosophila head membranes. Binding analyses with more specific ligands showed the presence of two distinct opioid sites in this tissue. One site was labeled by [3H]dihydromorphine ([3H]DHM), a mu-selective ligand: KD = 150 +/- 34 nM; Bmax = 3.0 +/- 0.6 pmol/mg of protein. Trypsin or heat treatment (100 degrees C for 15 min) of the Drosophila extract reduced specific [3H]DHM binding by greater than 80%. The rank order of potency of drugs at this site was levorphanol greater than DHM greater than normorphine greater than naloxone much greater than dextrorphan; the mu-specific peptide [D-Ala2,Gly-ol5]-enkephalin and delta-, kappa-, and sigma-ligands were inactive at this site. The other site was labeled by (-)-[3H]ethylketocyclazocine ((-)-[3H]EKC), a kappa-opioid, which bound stereospecifically, saturably, and with relatively high affinity to an apparent single class of receptors (KD = 212 +/- 25 nM; Bmax = 1.9 +/- 0.2 pmol/mg of protein). (-)-[3H]EKC binding could be displaced by kappa-opioids but not by mu-, delta-, or sigma-opioids or by the kappa-peptide dynorphin. Specific binding constituted approximately 70% of total binding at 1 nM and approximately 50% at 800 nM for all three radioligands ([3H]etorphine, [3H]EKC, and [3H]DHM). Specific binding of the delta-ligands [3H][D-Ala2,D-Leu5]-enkephalin and [3H][D-Pen2,D-Pen5]-enkephalin was undetectable in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The availability of the bispenicillamine enkephalin [3H] [D-Pen2,D-Pen5]enkephalin ([3H]DPDPE) a highly selective ligand for delta-opioid receptors, has made possible a more definitive examination of the ontogeny of this receptor subtype. In this report, the binding characteristics of [3H]DPDPE in 5-day-old neonatal (P-5) and adult rat brain are compared. Analysis of saturation curves as well as homologous displacement data revealed no significant difference in the binding affinity of [3H]DPDPE between P-5 animals and adults. Conversely, the binding capacity increased fivefold during this period. The delta-specificity of the sites was further proven by competition experiments with mu- and delta-selective ligands. Mn2+ (0.5 mM) elevated [3H]DPDPE specific binding by lowering the Kd, whereas 50 microM 5'-guanylylimidodiphosphate inhibited it by decreasing the total number of high-affinity binding sites in both P-5 animals and adults. Pertussis toxin-catalyzed ADP ribosylation experiments revealed the presence of 40-kDa proteins, with a molecular mass corresponding to G protein subunits alpha i/alpha o, as early as 1 h after birth. There was a low, but detectable, basal low-Km GTPase activity in P-5 animals, which increased fivefold during postnatal development. The present report establishes the existence of high-affinity [3H]DPDPE binding as well as GTP-regulatory proteins 5 days after birth. Yet, heterologous competition studies and ionic effects suggest that neonatal binding sites differ from adult receptors. Whether the neonatal sites are newly synthesized, incompletely processed sites or a developmentally programmed isoform remains to be determined.  相似文献   

11.
An involvement of the mesolimbic dopamine (DA) system in mediating the motivational effects of opioids has been suggested. Accordingly, the present study employed the technique of in vivo microdialysis to examine the effects of selective mu-, delta-, and kappa- opioids on DA release in the nucleus accumbens (NAC) of anesthetized rats. Microdialysis probes were inserted into the NAC and perfusates were analyzed for DA and its metabolites, dihydroxyphenylacetic acid (DO-PAC) and homovanillic acid (HVA), using a reverse-phase HPLC system with electrochemical detection for separation and quantification. Intracerebroventricular (i.c.v.) administration of selective mu-opioid [D-Ala2, N-methyl-Phe4, Gly5-ol]-enkephalin (DAMGO) or delta-opioid [D-Pen2, D-Pen5]-enkephalin (DPDPE) agonists, at doses that function as positive reinforcers in rats, resulted in an immediate and significant increase in extracellular DA. DOPAC and HVA levels were also significantly increased. The effects of DAMGO were blocked by the selective mu-antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) whereas those of DPDPE were blocked by the delta-antagonist allyl2-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864). In contrast to mu- and delta-agonists, the kappa-agonist N-CH3-Tyr-Gly-Gly-Phe-Leu-Arg-N-CH3-Arg-D-Leu-NHC2H5 (E-2078), a dynorphin analog that produces aversive states, decreased DA release in a biphasic manner. Norbinaltorphimine, a selective kappa-antagonist, could block this effect. These results demonstrate that mu-, delta-, and kappa-opioid agonists differentially affect DA release in the NAC and this action is centrally mediated.  相似文献   

12.
13.
Mizoguchi H  Narita M  Nagase H  Tseng LF 《Life sciences》2000,67(22):2733-2743
The activation of mu-, delta- and kappa1-opioid receptors by their respective agonists increases the binding of the non-hydrolyzable GTP analog guanosine-5'-(gamma-thio)-triphosphate (GTPgammaS) to G proteins. Beta-endorphin is an endogenous opioid peptide which binds nonselectively to mu-, delta- and putative epsilon-opioid receptors. The present experiment was designed to determine which opioid receptors are involved in the stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the mouse pons/medulla. The mouse pons/medulla membranes were incubated in an assay buffer containing 50 pM [35S]GTPgammaS, 30 microM GDP and various concentrations of beta-endorphin. Beta-endorphin (0.1 nM-10 microM) increased [35S]GTPgammaS binding in a concentration-dependent manner, and 10 microM beta-endorphin produced a maximal stimulation of approximately 260% over baseline. This stimulation of [35S]GTPgammaS binding by beta-endorphin was partially attenuated by the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA), but not by the delta-opioid receptor antagonist naltrindole (NTI) or the kappa1-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Beta-endorphin stimulated [35S]GTPgammaS binding by about 80% in the presence of 10 microM beta-FNA, 30 nM NTI and 100 nM nor-BNI. The same concentrations of these antagonists completely blocked the stimulation of [35S]GTPgammaS binding induced by 10 microM [D-Ala2,NHPhe4,Gly-ol]enkephalin, [D-Pen(2,5)]enkephalin and U50,488H, respectively. Moreover, the residual stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the presence of the three opioid receptor antagonists was significantly attenuated by 100 nM of the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27). These results indicate that the stimulation of [35S]GTPgammaS binding induced by beta-endorphin is mediated by the stimulation of both mu- and putative epsilon-opioid receptors in the mouse pons/medulla.  相似文献   

14.
The range of delta-selectivity of linear and cyclic analogues of enkephalin in rat brain was found to be: [D-Pen2, L-Pen5] enkephalin (DPLPE) greater than [D-Pen2, D-Pen5] enkephalin (DPDPE) greater than [D-Thr2, Leu5] enkephalyl-Thr6 (DTLET) greater than [D-Ser2, Leu5] enkephalyl-Thr6 (DSLET). Saturation experiments performed with [3H]DPDPE and [3H]DTLET in NG108-15 cells and rat brain showed similar binding capacities for both the ligands, but the delta-affinity of [3H]DTLET (KD approximately 1.2 nM) was much better than that of [3H]DPDPE (KD approximately 7.2 nM). The rather low delta-affinity of DPDPE induced high experimental errors cancelling the benefit of its better delta-selectivity. Binding experiments in rat or guinea-pig brains showed, in both cases, the better delta-selectivity of [3H]DTLET compared to [3H]DSLET. The former peptide remains at this time the most appropriate radioactive probe for binding studies of delta-receptor.  相似文献   

15.
In guinea-pig brain, [3H]bremazocine has a binding capacity of 27.2 pmol/g wet tissue, which is statistically different from that of [3H]ethylketazocine (14.7 pmol/g wet tissue) or the sum of the individual binding capacities of mu-, delta-, and kappa-selective ligands (15.0 pmol/g wet tissue). Saturation studies of [3H]bremazocine performed in the presence of unlabelled mu-, delta-, and kappa-blockers still reveal a homogeneous population of binding sites. [3H]Bremazocine under suppressed conditions displays at these sites a Kd of 2.51 nM with a binding capacity of 9.15 pmol/g wet tissue. We have performed the pharmacological characterization of these additional opioid binding sites. Displacement curves measured with a number of opioid substances were all best fitted to a one-site model. The stereoselectivity of these additional sites was demonstrated by using two groups of stereoisomers. Oripavine and benzomorphan opioids were among the most potent drugs at the [3H]bremazocine sites (mu + delta + kappa suppressed). Diprenorphine, bremazocine, cyclazocine, and ethylketazocine displayed apparent affinities constants (1/Ka) of 8.66, 7.57, 21.4, and 38.0 nM, respectively at those sites. The kappa-selective drugs U50488, U69593, PD117302, and tifluadom were inhibitors of the binding of [3H]bremazocine at these sites with apparent affinities of 113, 268, 76.9, and 47.9 nM. All mu- or delta-selective drugs tested in this study have caused weak or no inhibition of the binding. Correlation analyses were done between the different affinities measured at the [3H]bremazocine sites (mu + delta + kappa suppressed) and those observed at the known mu-, delta-, and kappa-sites of the guinea-pig brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Six analogs of the highly delta opioid receptor selective, conformationally restricted, cyclic peptide [D-Pen2,D-Pen5]enkephalin, Tyr-D-Pen-Gly-Phe-D-PenOH (DPDPE), were synthesized and evaluated for opioid activity in rat brain receptor binding and mouse vas deferens (MVD) smooth muscle assays. All analogs were single amino acid modifications of DPDPE and employed amino acid substitutions of known effects in linear enkephalin analogs. The effect on binding affinity and MVD potency of each modification within the DPDPE structural framework was consistent with the previous reports on similarly substituted linear analogs. Conformational features of four of the modified DPDPE analogs were examined by 1H NMR spectroscopy and compared with DPDPE. From these studies it was concluded that the observed pharmacological differences with DPDPE displayed by diallyltyrosine1-DPDPE ([DAT1]DPDPE) and phenylglycine4-DPDPE ([Pgl4]DPDPE) are due to structural and/or conformational differences localized near the substituted amino acid. The observed enhanced mu receptor binding affinity of the carboxamide terminal DPDPE-NH2 appears to be founded solely upon electronic differences, the NMR data suggesting indistinguishable conformations. The observation that the alpha-aminoisobutyric acid substituted analog [Aib3]DPDPE displays similar in vitro opioid behavior as DPDPE while apparently assuming a significantly different solution conformation suggests that further detailed conformational analysis of this analog will aid the elucidation of the key structural and conformational features required for action at the delta opioid receptor.  相似文献   

17.
The ability of selective mu- ([D-Ala2, NHPhe4, Gly-ol]enkephalin: DAMGO), delta1- ([D-Pen2, Pen5]enkephalin: DPDPE) and delta2- ([D-Ala2]deltorphin II: DELT II) opioid receptor agonists to activate G-proteins in the midbrain and forebrain of mice and rats was examined by monitoring the binding of guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS). The levels of [35S]GTPgammaS binding stimulated by DAMGO in the mouse and rat midbrain were significantly greater than those by DPDPE or DELT II. However, relatively lower levels of stimulation of [35S]GTPgammaS binding by all of the agonists than would have been predicted from the receptor densities were observed in either the limbic forebrain or striatum of mice and rats. The effects of DAMGO, DPDPE and DELT II in all three regions were completely reversed by selective mu-, delta1- and delta2-antagonists, respectively. The results indicate that the levels of mu-, delta1- and delta2-opioid receptor agonist-induced G-protein activation in the midbrain are in good agreement with the previously determined distribution densities of each receptor type. Furthermore, the discrepancies observed in the forebrain might reflect differential catalytic efficiencies of receptor-G-protein coupling.  相似文献   

18.
A monoclonal antibody (mAb), KA8 that interacts with the kappa-opioid receptor binding site was generated. BALB/c female mice were immunized with a partially purified kappa-opioid receptor preparation from frog brain. Spleen cells were hybridized with SP2/0AG8 myeloma cells. The antibody-producing hybridomas were screened for competition with opioid ligands in a modified enzyme-linked immunosorbent assay. The cell line KA8 secretes an IgG1 (kappa-light chain) immunoglobulin. The mAb KA8 purified by affinity chromatography on protein A-Sepharose CL4B was able to precipitate the antigen from a solubilized and affinity-purified frog brain kappa-opioid receptor preparation. In competition studies, the mAb KA8 decreased specific [3H]ethylketocyclazocine ([3H]EKC) binding to the frog brain membrane fraction in a concentration-dependent manner to a maximum to 72%. The degree of the inhibition was increased to 86% when mu- and delta-opioid binding was suppressed by 100 nM [D-Ala2,NMe-Phe4,Gly-ol]-enkephalin (DAGO) and 100 nM [D-Ala2,L-Leu5]-enkephalin (DADLE), respectively, and to 100% when mu-, delta-, and kappa 2-sites were blocked by 5 microM DADLE. However, the mu-specific [3H]DAGO and the delta-preferring [3H]DADLE binding to frog brain membranes cannot be inhibited by mAb KA8. These data suggest that this mAb is recognizing the kappa- but not the mu- and delta-subtype of opioid receptors. The mAb KA8 also inhibits specific [3H]naloxone and [3H]EKC binding to chick brain cultured neurons and rat brain membranes, whereas it has only a slight effect on [3H]EKC binding to guinea pig cerebellar membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Polyenylphosphatidylcholine is a choline-glycerophospholipid containing up to 80% of total fatty acids as linoleic acid and may be an important factor in ensuring normal functioning of cell membranes. We tested the effect of a polyenylphosphatidylcholine-supplemented diet and compared it with both a trilinolein-supplemented and a laboratory chow diet on the fatty acid composition, microviscosity, and delta-6-desaturase activity of liver microsomal membranes of 12-month-old rats, in the absence or presence of oxidative stress induced by adriamycin. Polyenylphosphatidylcholine- and trilinolein-supplemented diets showed a similar increase in linoleic acid content and delta-6-desaturase activity in liver microsomes, indicating that low amounts of linoleic acid are able to partially restore the enzyme activity in old rats, independent of the source of linoleic acid. After adriamycin treatment, delta-6-desaturase activity increased in polyenylphosphatidylcholine and trilinolein groups, indicating a protective mechanism against the damage induced by polyunsaturated fatty acid peroxidation. The measurement of malondialdehyde production showed a protective effect on adriamycin-induced lipid peroxidation by polyenylphosphatidylcholine supplementation only. Microsomal membrane microviscosity did not change independent of diet and adriamycin treatment, suggesting that the response of microsomes to lipid peroxidation might be the maintenance of a given membrane order. Administration of polyenylphosphatidylcholine can prevent or minimize the liver damage induced by adriamycin treatment.  相似文献   

20.
In synaptosomal membranes from rat brain cortex, in the presence of 150 mM NaCl, the opioid antagonist [3H]naltrexone bound to two populations of receptor sites with affinities of 0.27 and 4.3 nM, respectively. Guanosine-5'-(3-thiotriphosphate) had little modulating effect and did not alter the biphasic nature of ligand binding. On the other hand, receptor-selective opioids differentially inhibited the two binding components of [3H]naltrexone. As shown by nonlinear least-squares analysis, the mu opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol or sufentanil abolished high-affinity [3H]naltrexone binding, whereas the delta-selective ligands [D-Pen2,D-Pen5]enkephalin, ICI 174,864, and oxymorphindole inhibited and eventually eliminated the low-affinity component in a concentration-dependent manner. These results indicate that, in contrast to the guanine nucleotide-sensitive biphasic binding of opioid-alkaloid agonists, the heterogeneity of naltrexone binding in brain membranes reflects ligand interaction with different opioid-receptor types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号