首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB “mis-repair”, in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer.  相似文献   

2.
DNA damage, malfunctions in DNA repair, and genomic instability are processes that intersect at the crossroads of carcinogenesis. Underscoring the importance of DNA repair in breast and ovarian tumorigenesis is the familial inherited cancer predisposition gene BRCA2. The role of BRCA2 in DNA double-strand break repair was first revealed based on its interaction with RAD51, a central player in homologous recombination. The RAD51 protein forms a nucleoprotein filament on single-stranded DNA, invades a DNA duplex, and initiates a search for homology. Once a homologous DNA sequence is found, the DNA is used as a template for the high-fidelity repair of the DNA break. Many of the biochemical features that allow BRCA2 to choreograph the activities of RAD51 have been elucidated and include: targeting RAD51 to single-stranded DNA while inhibiting binding to dsDNA, reducing the ATPase activity of RAD51, and facilitating the displacement of the single-strand DNA binding protein, Replication Protein A. These reinforcing activities of BRCA2 culminate in the correct positioning of RAD51 onto a processed DNA double-strand break and initiate its faithful repair by homologous recombination. In this review, I will address current biochemical data concerning the BRCA2 protein and highlight unanswered questions regarding BRCA2 function in homologous recombination and cancer.  相似文献   

3.
The breast cancer 2, early onset protein (BRCA2) is central to the repair of DNA damage by homologous recombination. BRCA2 recruits the recombinase RAD51 to sites of damage, regulates its assembly into nucleoprotein filaments and thereby promotes homologous recombination. Localization of BRCA2 to nuclear foci requires its association with the partner and localizer of BRCA2 (PALB2), mutations in which are associated with cancer predisposition, as well as subtype N of Fanconi anaemia. We have determined the structure of the PALB2 carboxy‐terminal β‐propeller domain in complex with a BRCA2 peptide. The structure shows the molecular determinants of this important protein–protein interaction and explains the effects of both cancer‐associated truncating mutants in PALB2 and missense mutations in the amino‐terminal region of BRCA2.  相似文献   

4.
周纪东  喻晓蔚 《生命科学》2002,14(5):288-290,274
乳腺癌和卵巢癌敏感基因BRCA1和BRCA2与同源重组,DNA损伤修复,胚胎生长,转录调控及遍在蛋白化有关,其中,BRCA1和BRCA2在DNA损伤修复和转录调控中功能的确定,将有助于探讨和阐明两者的肿瘤抑制功能及其机理,作者将综述近年来有关BRCA1和BRCA2在DNA损伤修复和转录调控中功能研究的最新进展。  相似文献   

5.
6.
乳腺癌易感基因BRCA1研究进展   总被引:2,自引:0,他引:2  
严景华  叶棋浓  黄翠芬 《遗传》2004,26(3):367-372
BRCA1是目前所发现的最重要的乳腺癌易感基因之一,它在DNA损伤修复,细胞周期调节,基因的转录激活,染色质稳定性,细胞增殖等方面都起着重要作用。该文着重介绍近几年来BRCA1基础研究方面的进展,并讨论BRCA1在肿瘤发生、发展过程的作用。为BRCA1在临床上的应用提供理论依据。  相似文献   

7.
Chromosomal breakage syndromes and the BRCA1 genome surveillance complex   总被引:6,自引:0,他引:6  
Chromosomal instability can occur when the DNA damage response and repair process fails, resulting in syndromes characterized by growth abnormalities, hematopoietic defects, mutagen sensitivity, and cancer predisposition. Mutations in ATM, NBS1, MRE11, BLM, WRN, and FANCD2 are responsible for ataxia telangiectasia (AT), Nijmegen breakage syndrome, AT-like disorder, Bloom and Werner syndrome, and Fanconi anemia group D2, respectively. This diverse group of disorders is thought to be linked through protein interactions with the breast cancer tumor susceptibility gene product, BRCA1. BRCA1 forms a multi-subunit protein complex referred to as the BRCA1-associated genome surveillance complex (BASC), which includes DNA damage repair proteins such as MSH2-MSH6 and MLH1, as well as ATM, NBS1, MRE11, and BLM. Although still controversial, this finding suggests similarities in the pathogenesis of the human chromosome breakage syndromes and a complementary role for each protein in DNA structure surveillance or damage repair.  相似文献   

8.
9.
10.
11.
12.
Psoralen 4 (Pso4) is an evolutionarily conserved protein that has been implicated in a variety of cellular processes including RNA splicing and resistance to agents that cause DNA interstrand cross-links. Here we show that the hPso4 complex is required for timely progression through S phase and transition through the G2/M checkpoint, and it functions in the repair of DNA lesions that arise during replication. Notably, hPso4 depletion results in delayed resumption of DNA replication after hydroxyurea-induced stalling of replication forks, reduced repair of spontaneous and hydroxyurea-induced DNA double strand breaks (DSBs), and increased sensitivity to a poly(ADP-ribose) polymerase inhibitor. Furthermore, we show that hPso4 is involved in the repair of DSBs by homologous recombination, probably by regulating the BRCA1 protein levels and the generation of single strand DNA at DSBs. Together, our results demonstrate that hPso4 participates in cell proliferation and the maintenance of genome stability by regulating homologous recombination. The involvement of hPso4 in the recombinational repair of DSBs provides an explanation for the sensitivity of Pso4-deficient cells to DNA interstrand cross-links.  相似文献   

13.
RD‐N, an aminomethylated derivative of riccardin D, is a lysosomotropic agent that can trigger lysosomal membrane permeabilization followed by cathepsin B (CTSB)‐dependent apoptosis in prostate cancer (PCa) cells, but the underlying mechanisms remain unknown. Here we show that RD‐N treatment drives CTSB translocation from the lysosomes to the nucleus where it promotes DNA damage by suppression of the breast cancer 1 protein (BRCA1). Inhibition of CTSB activity with its specific inhibitors, or by CTSB‐targeting siRNA or CTSB with enzyme‐negative domain attenuated activation of BRCA1 and DNA damage induced by RD‐N. Conversely, CTSB overexpression resulted in inhibition of BRCA1 and sensitized PCa cells to RD‐N‐induced cell death. Furthermore, RD‐N‐induced cell death was exacerbated in BRCA1‐deficient cancer cells. We also demonstrated that CTSB/BRCA1‐dependent DNA damage was critical for RD‐N, but not for etoposide, reinforcing the importance of CTSB/BRCA1 in RD‐N‐mediated cell death. In addition, RD‐N synergistically increased cell sensitivity to cisplatin, and this effect was more evidenced in BRCA1‐deficient cancer cells. This study reveals a novel molecular mechanism that RD‐N promotes CTSB‐dependent DNA damage by the suppression of BRCA1 in PCa cells, leading to the identification of a potential compound that target lysosomes for cancer treatment.  相似文献   

14.
15.
The phosphorylation state of the tumor suppressor protein BRCA1 is tightly associated with its functions including cell cycle control and DNA repair. Protein kinases involved in the DNA damage checkpoint control, such as ATM, ATR, and hCds1/Chk2, have been shown to phosphorylate and activate BRCA1 upon DNA damage. We reported previously that protein phosphatase 1alpha (PP1alpha) interacts with and dephosphorylates hCds1/Chk2-phosphorylated BRCA1. This study demonstrates the identification of a PP1-binding motif 898KVTF901 in BRCA1. Mutation or deletion of critical residues in this PP1-binding motif substantially reduces the interaction between BRCA1 and PP1alpha. PP1alpha can also dephosphorylate ATM and ATR phosphorylation sites in BRCA1 and may serve as a general regulator for BRCA1 phosphorylation. Unlike wild-type BRCA1, expression of the PP1 non-binding mutant BRCA1 protein in BRCA1-deficient cells failed to enhance survival after DNA damage. Taken together, these results suggest that interaction with PP1alpha is important for BRCA1 function.  相似文献   

16.
Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner in the maintenance of genomic integrity.  相似文献   

17.
The BRCA2 tumor suppressor is a DNA double‐strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2‐deficient cells spontaneously accumulate DNA‐RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD‐box RNA helicase DDX5 as a BRCA2‐interacting protein. DDX5 associates with DNA‐RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA‐RNA hybrid‐unwinding activity of DDX5 helicase. An impaired BRCA2‐DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2‐T207A, reduces the association of DDX5 with DNA‐RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA‐RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.  相似文献   

18.
DNA damage is a critical event that requires an appropriate cellular response. This is mediated by checkpoint proteins such as Cdk1 that controls S/G2 and G2/M transition. Cdk1 is required for BRCA1 transport to DNA damage sites inside the nucleus where BRCA1 functions as a scaffold to initiate a signaling cascade. BRCA1 is a multifunctional protein that also ubiquitinates γ-tubulin and, consequently, inhibits microtubule nucleation at the centrosome. Here, we report that γ-tubulin also localizes at confined areas in the microtubule network. Nocodazole-mediated microtubule depolymeration results in disappearance of this γ-tubulin fraction, while microtubule stabilization by taxol preserves this structure. Surprisingly, overexpression of Cdk1 or BRCA1 greatly expands the γ-tubulin coating of microtubules, suggesting that the microtubule-bound γ-tubulin is involved in DNA damage response. This is in accordance with numerous reports of microtubule-associated DNA damage proteins, such as p53, that are transported to the nucleus when DNA damage occurs. γ-Tubulin itself has been reported to form complexes with DNA repair proteins in the nucleus.  相似文献   

19.
Protein phosphatase 1alpha (PP1alpha) regulates phosphorylation of BRCA1, which contains a PP1-binding motif (898)KVTF(901). Mutation of this motif greatly reduces the interaction between BRCA1 and PP1alpha. Here we show that mutation of the PP1-binding motif abolishes the ability of BRCA1 to enhance survival of Brca1-deficient mouse mammary tumor cells after DNA damage. The Rad51 focus formation and comet assays revealed that the DNA repair function of BRCA1 was impaired when the PP1-binding motif was mutated. Analysis of subnuclear localization of GFP-tagged BRCA1 demonstrated that mutation of the PP1-binding motif affected BRCA1 redistribution in response to DNA damage. BRCA1 is required for the formation of Rad51 subnuclear foci after DNA damage. Mutation of the PP1-binding motif in BRCA1 also affected recruitment of Rad51 to sites of DNA damage. Consistent with these findings, knockdown of PP1alpha in BRCA1-proficient cells by small interfering RNA also significantly reduced Rad51 focus formation induced by DNA damage. Further analysis indicated that mutation of the PP1-binding motif compromised BRCA1 activities in homologous recombination. Altogether, our data implicate that interaction with PP1alpha is important for BRCA1 function in DNA repair.  相似文献   

20.
The gene BRCA2, first identified as a breast cancer susceptibility locus in humans, encodes a protein involved in DNA repair in mammalian cells and mutations in this gene confer increased risk of breast cancer. Here we report a functional characterisation of a Trypanosoma brucei BRCA2 (TbBRCA2) orthologue and show that the protein interacts directly with TbRAD51. A further protein-protein interaction screen using TbBRCA2 identified other interacting proteins, including a trypanosome orthologue of CDC45 which is involved in initiation and progression of the replication fork complex during DNA synthesis. Deletion of the TbBRCA2 gene retards cell cycle progression during S-phase as judged by increased incorporation of BrdU and an increased percentage of cells with one nucleus and two kinetoplasts. These results provide insights into the potential role played by BRCA2 in DNA replication and reveal a novel interaction that couples replication and recombination in maintaining integrity of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号