首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Specific antimicrobial antibodies present in the sera of patients with inflammatory bowel disease (IBD) have been proven to be valuable serological biomarkers for diagnosis/prognosis of the disease. Herein we describe the use of a whole Escherichia coli proteome microarray as a novel high throughput proteomics approach to screen and identify new serological biomarkers for IBD. Each protein array, which contains 4,256 E. coli K12 proteins, was screened using individual serum from healthy controls (n = 39) and clinically well characterized patients with IBD (66 Crohn disease (CD) and 29 ulcerative colitis (UC)). Proteins that could be recognized by serum antibodies were visualized and quantified using Cy3-labeled goat anti-human antibodies. Surprisingly significance analysis of microarrays identified a total of 417 E. coli proteins that were differentially recognized by serum antibodies between healthy controls and CD or UC. Among those, 169 proteins were identified as highly immunogenic in healthy controls, 186 proteins were identified as highly immunogenic in CD, and only 19 were identified as highly immunogenic in UC. Using a supervised learning algorithm (k-top scoring pairs), we identified two sets of serum antibodies that were novel biomarkers for specifically distinguishing CD from healthy controls (accuracy, 86 ± 4%; p < 0.01) and CD from UC (accuracy, 80 ± 2%; p < 0.01), respectively. The Set 1 antibodies recognized three pairs of E. coli proteins: Era versus YbaN, YhgN versus FocA, and GabT versus YcdG, and the Set 2 antibodies recognized YidX versus FrvX. The specificity and sensitivity of Set 1 antibodies were 81 ± 5 and 89 ± 3%, respectively, whereas those of Set 2 antibodies were 84 ± 1 and 70 ± 6%, respectively. Serum antibodies identified for distinguishing healthy controls versus UC were only marginal because their accuracy, specificity, and sensitivity were 66 ± 5, 69 ± 5, and 61 ± 7%, respectively (p < 0.04). Taken together, we identified novel sets of serological biomarkers for diagnosis of CD versus healthy control and CD versus UC.Crohn disease (CD)1 and ulcerative colitis (UC) are chronic, idiopathic, and clinically heterogeneous intestinal disorders collectively known as inflammatory bowel disease (IBD) (1, 2). Although the distinction between UC and CD would seem clear based on the combination of clinical, endoscopic, and radiological criteria, indeterminate colitis is present in up to 10 and 20% of adult and pediatric patients with isolated colitis, respectively (3, 4).Serological testing is a non-invasive method for diagnosing IBD and differentiating UC from CD (57). Several serological IBD biomarkers have been identified in the past decade, and some have been used in IBD clinics (57) (see the list below). Many of these antibodies are produced on intestinal exposure to normal commensal bacteria in genetically susceptible individuals. Although it is not known whether these antibodies are pathogenic or not, they are specific to patients with either CD or UC and may reflect a dysregulated immune inflammatory response to intestinal bacterial antigens (2, 810). Several experimental animal models of IBD have led to the theory that the pathogenesis of IBD is the result of an aberrant immune response to normal commensal bacteria in genetically susceptible individuals (11, 12). In fact, most of the major serological biomarkers being used in IBD clinics are antibodies to microbial antigens, including yeast oligomannose (anti-Saccharomyces cerevisiae (ASCA)), bacterial outer membrane porin C (OmpC), Pseudomonas fluorescens bacterial sequence I2 (anti-I2), and most recently bacterial flagellin (CBir 1) (57, 13). All of these antimicrobial antibodies show a preponderance in patients with CD. However, ASCA has been identified in up to 5% of patients with UC (13, 14).In comparison, perinuclear anti-neutrophil cytoplasmic antibody (pANCA) with perinuclear highlighting was first described in 1990. Although generally considered an autoantibody, the specific antigenic stimulation for pANCA production remains unclear. This autoantibody is present in up to 70% of patients with UC and in up to 20% of patients with CD (6, 10). Recently a panel of five new anti-glycan antibodies have been identified, including anti-chitobioside IgA, anti-laminaribioside IgG, anti-mannobioside IgG, and antibodies against two major chemically synthesized (Σ) oligomannose epitopes, Man α-1,3 Man α-1,2 Man (ΣMan3) and Man α-1,3 Man α-1,2 Man α-1,2 Man (ΣMan4) (5, 13, 15). These new biomarkers serve as valuable complimentary tools to the available serological biomarkers mentioned above. Collectively these antibodies are not generally present in either children or adults with non-IBD disease and may represent serological markers of intestinal inflammation specific to UC or CD.Although encouraging, none of the current commercially available biomarker tests/assays, including all of those mentioned above, can be used as stand alone tools in clinics and therefore are only recommended as an adjunct to endoscopy in diagnosis and prognosis of the disease (5, 7, 16). Therefore, additional specific and sensitive IBD biomarkers are needed as are prospective studies to assess the utility of current and newly identified biomarkers (5, 13). Proteomics technologies such as two-dimensional gel electrophoresis, various variations of mass spectrometry, and protein chip (array) technology are now proving to be powerful tools in biomarker discovery and are beginning to be utilized in IBD biomarker discovery (5, 17). These technologies enable robust and/or large scale and high throughput identification and analysis of differential protein expression when comparing disease with control. Blood-based (serum- or plasma-based) proteomics holds particular promises for biomarker discovery of various human diseases such as neurodegenerative diseases and cancers (1820). Antigen microarrays are also powerful tools that allow high throughput serum analysis of aberrant immune responses in autoimmune diseases (2123) as well as efficient discovery of biomarkers for infectious pathogens (24). Herein we describe the use of an Escherichia coli proteome microarray to characterize the differential immune response (serum anti-E. coli antibodies) among patients clinically classified as CD, UC, and healthy controls. We hypothesized that novel IBD-specific antimicrobial antibodies, particularly anti-E. coli antibodies, are present in IBD patients and are likely to be identified by screening the sera with E. coli protein arrays.  相似文献   

3.
Gram-negative bacterial endotoxin is a potent immunostimulant implicated in the development and/or progression of a variety of diseases. The mammalian immune system has both innate and adaptive immune responses to neutralize endotoxin. In this study, a system was developed to monitor bacterial exposure by measuring the extent and nature of endotoxin neutralization in plasma. In control patients, females had higher levels of endotoxin neutralization than males, mirroring clinical outcomes from bacterial infection and sepsis. In addition to the total amount of neutralization, we used inactivation techniques to elucidate the nature of this activity and develop a system to compare early and late immune responses. Using this method to monitor patients with inflammatory bowel disease, we found a more robust total response that relies more on long-term, adaptive components of the immune system and less on early, innate components. Our results indicate that endotoxin neutralization is a valuable method to discern inflammatory bowel disease patients from a control population. Additionally, the nature of neutralization may be valuable in monitoring disease severity and/or the role of medication.  相似文献   

4.

Objective

The aim of this study was to compare the consumption of dental treatment among patients with Crohn´s disease (CD) or ulcerative colitis (UC) compared to age and gender matched control groups.

Design

The study group comprised 2085 patients with CD and 3161 with UC from the Uppsala-Örebro region and from the Stockholm region. The patients in the cohort were diagnosed between 1960 and 1989. Patients up to 70 years of age were included in the study. The two patients groups were compared to age- and gender-matched, randomly selected control groups from the same geographic area comprising a corresponding number of participants.

Results

CD patients had significantly higher total number of procedures registered (p < 0.000). The difference was most pronounced for removable dentures (+65%), fillings in front teeth (+52%) and endodontic treatment (+46%) when Crohn’s patients were compared to controls (p<0.001). The corresponding figures for UC patients were also a significantly higher total number of procedures (p < 0.005), more clinical examinations (p<0.000), fillings in canines and incisors (p < 0.001) and fillings in bicuspids and molars (p < 0.000).

Conclusion

This study demonstrate that CD and UC individuals use more dental treatment compared to an age-gender matched control group, and more caries-related treatments. The difference was most pronounced for restorative treatment in patients with Crohn’s.  相似文献   

5.
6.
Heat shock proteins have been implicated as endogenous activators for dendritic cells (DCs). Chronic expression of heat shock protein gp96 on cell surfaces induces significant DC activations and systemic lupus erythematosus (SLE)-like phenotypes in mice. However, its potential as a therapeutic target against SLE remains to be evaluated. In this work, we conducted chemical approach to determine whether SLE-like phenotypes can be compromised by controlling surface translocation of gp96. From screening of chemical library, we identified a compound that binds and suppresses surface presentation of gp96 by facilitating its oligomerization and retrograde transport to endoplasmic reticulum. In vivo administration of this compound reduced maturation of DCs, populations of antigen presenting cells, and activated B and T cells. The chemical treatment also alleviated the SLE-associated symptoms such as glomerulonephritis, proteinuria, and accumulation of anti-nuclear and –DNA antibodies in the SLE model mice resulting from chronic surface exposure of gp96. These results suggest that surface translocation of gp96 can be chemically controlled and gp96 as a potential therapeutic target to treat autoimmune disease like SLE.  相似文献   

7.
Inflammation is now believed to be responsible for coronary heart disease (CHD). This belief has stimulated the evaluation of various inflammatory markers for predicting CHD. This study was designed to investigate the association between four inflammatory cytokines (CD121a, interleukin [IL]-1β, IL-8, and IL-11) and CHD. Here, we evaluated 443 patients with CHD and 160 CHD-free controls who underwent coronary angiography. Cytokines were evaluated using flow cytometry, and statistical analyses were performed to investigate the association between cytokine levels and the risk of CHD. Patients with CHD had significantly higher levels of CD121a. The odds ratios for CHD according to increasing CD121a quartiles were 1.00, 1.47 [95% confidence interval (CI): 0.79–2.72], 2.67 (95% CI: 1.47–4.84), and 4.71 (95% CI: 2.65–8.37) in an age- and sex-adjusted model, compared to 1.00, 1.48 (95% CI: 0.70–3.14), 2.25 (95% CI: 1.10–4.62), and 4.39 (95% CI: 2.19–8.79) in a model that was adjusted for multiple covariates. A comparison of the stable angina, unstable angina, and acute myocardial infarction (AMI) subgroups revealed that patients with AMI had the highest CD121a levels, although IL-1β levels were similar across all groups. IL-8 levels were also increased in AMI patients, and IL-11 levels were higher in CHD patients than in non-CHD patients. Correlation analysis revealed a positive association between CD121a, IL-8, and the Gensini score. Together, the significant increase in CD121a levels among CHD patients suggests that it may be a novel inflammatory marker for predicting CHD.  相似文献   

8.
In 2020, impediments to pediatric obesity (PO) treatment remain pervasive, even though these barriers are clearly documented in medical literature. Providers must invest considerable resources to overcome these barriers to care. Notable barriers include gaps in medical education, misperceptions of the disease, weight bias and stigma, exclusion of coverage in health plans, and thus an unsustainable financial framework. Hence, this review offers an updated social‐ecological framework of accessibility to care, wherein each barrier to care or variable is interdependent on the other and each is critical to creating forward momentum. The sum of all these variables is instrumental to overall smooth function, configured as a wheel. To treat PO effectively, all variables must be adequately addressed by stakeholders throughout the health care system in order to holistically comprehend and appreciate undertakings to advance the burgeoning field of PO medicine.  相似文献   

9.

Hydrogen sulfide (H2S) has emerged as a novel gaseous signal molecule with multifarious effects on seed germination, plant growth, development, and physiological processes. Due to its dominant role in plant stress tolerance and cross-adaptation, it is getting more attention nowadays, although it has been largely referred as toxic and environmental hazardous gas. In this review work, we are highlighting the importance of H2S as an essential gaseous molecule to help in signaling, metabolism, and stress tolerance in plants. Firstly, production of H2S from different natural and artificial sources were discussed with its transformation from sulfur (S) to sulfate (SO42−) and then to sulfite (SO32−). The importance of different kinds of transporters that helps to take SO42− from the soil solution was presented. Mainly, these transporters are SULTRs (H+/SO42− cotransporters) and multigene family encodes them. Furthermore, these SULTRs have LAST (Low affinity transport proteins), HAST (High affinity transport proteins), vacuole transporters, and plastid transporters. Since it is well known that there is strong relationship between SO42− and synthesis of hydrogen sulfide or dihydrogen sulfide or sulfane in plant cells. Thus, cysteine (Cys) metabolism through which H2S could be generated in plant cell with the role of different enzymes has been presented. Furthermore, H2S in interaction with other molecules could help to mitigate biotic and abiotic stress. Based on this review work, it can be concluded that H2S has potential to induce cross-adaptation to biotic and abiotic stress; thus, it is recommended that it should be considered in future studies to answer the questions like what are the receptors of H2S in plant cell, where in plants the physiological concentration of H2S is high in response to multiple stress and how it induces cross-adaptation by interaction with other signal molecules.

  相似文献   

10.
Amlexanox, a small molecule targeted therapy which has been used in the treatment of atopic conditions was previously but is not currently available in the United States. Amlexanox has also been legally utilized and administered in Japan as a treatment for asthma, a chronic pulmonary disease characterized by inflammation of the lower respiratory tract. Amlexanox’s immune modulatory effects have been the subject of studies which have repurposed the drug for potential therapeutic applications in metabolic and inflammatory disease. Because amlexanox inhibits TANK-binding kinase1 (TBK1) and nuclear factor kB kinase epsilon (IKKε), several studies have demonstrated its usefulness through its evidence downregulation of the immune system and attenuation of downstream TBK1 signaling. Novel therapies, such as amlexanox, for inflammatory conditions such as asthma will continue to be of value in clinical management. This report summarizes key applications of the drug based on animal and human studies and explores its potential in treatment of metabolic and inflammatory diseases.  相似文献   

11.
The aim of this study was to follow, during standardized initiation of thiopurine treatment, thiopurine methyltransferase (TPMT) gene expression and enzyme activity and thiopurine metabolite concentrations, and to study the role of TPMT and ITPA 94C > A polymorphisms for the development of adverse drug reactions. Sixty patients with ulcerative colitis or Crohn's disease were included in this open and prospective multi-center study. Thiopurine naïve patients were prescribed azathioprine (AZA), patients previously intolerant to AZA received 6-mercaptopurine (6-MP). The patients followed a predetermined dose escalation schedule, reaching target dose at Week 3; 2.5 and 1.25 mg/kg body weight for AZA and 6-MP, respectively. The patients were followed every week during Weeks 1–8 from baseline and then every 4 weeks until 20 weeks. TPMT activity and thiopurine metabolites were determined in erythrocytes, TPMT and ITPA genotypes, and TPMT gene expression were determined in whole blood. One homozygous TPMT-deficient patient was excluded. Five non compliant patients were withdrawn during the first weeks. Twenty-seven patients completed the study per protocol; 27 patients were withdrawn because of adverse events. Sixty-seven percent of the withdrawn patients tolerated thiopurines at a lower dose at Week 20. There was no difference in baseline TPMT enzyme activity between individuals completing the study and those withdrawn for adverse events (p = 0.45). A significant decrease in TPMT gene expression (TPMT/huCYC ratio, p = 0.02) was found, however TPMT enzyme activity did not change. TPMT heterozygous individuals had a lower probability of remaining in the study on the predetermined dose (p = 0.039). The ITPA 94C > A polymorphism was not predictive of adverse events (p = 0.35).  相似文献   

12.
目的观察微波联合抗生素治疗盆腔炎的临床疗效。方法采用抗生素加微波治疗,对照组采用抗生素进行治疗,比较两组临床疗效。结果观察组30例治愈27例,好转2例。治愈率90.0%.总有效率96.67%。对照组30患者治愈24例,好转3倒,治愈率80.0%。总有效率90.0%。两组差异有统计学意义。结论微波联合抗生素治疗盆腔炎性的治疗效果肯定,值得基层医疗机构推广应用。  相似文献   

13.
炎症性肠病是一种常见的免疫功能紊乱所致慢性顽固性胃肠道炎性疾病,现有的治疗手段难以根治。随着炎症性肠病分子机制研究的不断深入,在基因水平上应用核酸药物及其给药系统,对炎症性肠病发挥的独特治疗作用,已受到越来越多的关注, 并取得一定进展。本文简介炎症性肠病的发病机制,综述近年来核酸药物及其给药系统用于炎症性肠病治疗的研究进展。  相似文献   

14.
Japanese macaque rhadinovirus (JMRV) is a novel gamma-2 herpesvirus that was isolated from a Japanese macaque (JM) with an inflammatory demyelinating encephalomyelitis referred to as Japanese macaque encephalomyelitis, a disease that possesses clinical and histopathological features resembling multiple sclerosis in humans. Genomic DNA sequence analysis reveals that JMRV is a gammaherpesvirus closely related to rhesus macaque rhadinovirus (RRV) and human herpesvirus 8. We describe here the complete nucleotide sequence and structure of the JMRV genome, as well as the sequence of two plaque isolates of this virus. Analysis of the JMRV genome not only demonstrates that this virus shares a number of genes with RRV that may be involved in pathogenesis but also indicates the presence of unique JMRV genes that could potentially contribute to disease development. The knowledge of the genomic sequence of JMRV, and the ability to easily propagate the virus in vitro, make JMRV infection of JM an attractive model for examining the potential role of an infectious viral agent in the development of demyelinating encephalomyelitis disease in vivo.  相似文献   

15.
Part of the Togaviridae family, alphaviruses, including chikungunya virus (CHIKV), Sindbis virus (SINV) and Ross River virus (RRV), are able to cause significant inflammatory pathologies ranging from arthritis to encephalitis. Following symptomatic infection with arthritis-associated alphaviruses, patients often experience severe joint pain, affecting distal and small joints, which can last six months or longer. Recently, methotrexate (MTX), a disease modifying anti-rheumatic drug (DMARD), was used to treat patients experiencing chronic rheumatic symptoms following infection with CHIKV. Here, the effect of MTX on Ross River virus disease (RRVD) in mice was examined to better understand its therapeutic potential for alphaviral-induced musculoskeletal disease and to further our knowledge of the development of alphaviral pathologies. Using a mouse model, we analyzed the effect of MTX on RRVD. RRV disease pathogenesis in response to MTX treatment was determined by measuring levels of proinflammatory factors, cellular infiltrates, viral titer and histological analysis of infected tissues. RRV-infected mice receiving MTX treatment rapidly developed musculoskeletal disease, which correlated with a significant influx of inflammatory cell infiltrates into the skeletal muscle tissue. Although no difference was observed in the level of proinflammatory cytokines and chemokines, the viral load increased at early time points post infection in the serum and quadriceps of MTX treated mice, possibly contributing to disease pathogenesis. Results suggest that MTX treatment of acute RRVD in mice provides no therapeutic benefit and underline the importance of inflammatory monocytes in alphaviral induced arthritides.  相似文献   

16.
Quinazolinones, which represent an important part of nitrogen-containing six-membered heterocyclic compounds, are frequently used in drug design due to their wide biological activity properties. Therefore, the novel quinazolinones were synthesized from the reaction of acylated derivatives of 4-hydroxy benzaldehyde with 3-amino-2-alkylquinazolin-4(3H)-ones with good yields (85–94 %) and their structures were characterized using Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1H-NMR, 13C-NMR), and High-Resolution Mass Spectroscopy (HR-MS). As the application of the synthesized compounds, their inhibition properties of the synthesized compounds on α-Glucosidase (α-Glu), Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE), and Carbonic anhydrase I–II (hCA I–II) metabolic enzymes were investigated. All compounds showed inhibition at nanomolar level with the Ki values in the range of 12.73±1.26–93.42±9.44 nM for AChE, 8.48±0.92–25.84±2.59 nM for BChE, 66.17±5.16–818.06±44.41 for α-Glu, 2.56±0.26–88.23±9.72 nM for hCA I, and 1.68±0.14–85.43±7.41 nM for hCA II. Molecular docking study was performed to understand the interactions of the most potent compounds with corresponding enzymes. Also, absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties of the compounds were investigated.  相似文献   

17.

Background

Chronic inflammatory diseases (CID) are globally highly prevalent and characterized by severe pathological medical conditions. Several trials were conducted aiming at measuring the effects of manipulative therapies on patients affected by CID. The purpose of this review was to explore the extent to which osteopathic manipulative treatment (OMT) can be benefi-cial in medical conditions also classified as CID.

Methods

This review included any type of experimental study which enrolled sub-jects with CID comparing OMT with any type of control procedure. The search was conducted on eight databases in January 2014 using a pragmatic literature search approach. Two independent re-viewers conducted study selection and data extraction for each study. The risk of bias was evaluated according to the Cochrane methods. Heterogeneity was assessed and meta-analysis performed where possible.

Results

10 studies met the inclusion criteria for this review enrolling 386 subjects. The search identified six RCTs, one laboratory study, one cross-over pilot studies, one observation-al study and one case control pilot study. Results suggest a potential effect of osteopathic medicine on patients with medical pathologies associated with CID (in particular Chronic Obstructive Pul-monary Disease (COPD), Irritable Bowel Syndrome, Asthma and Peripheral Arterial Disease) com-pared to no treatment or sham therapy although data remain elusive. Moreover one study showed possible effects on arthritis rat model. Meta-analysis was performed for COPD studies only show-ing no effect of any type of OMT applied versus control. No major side effects were reported by those receiving OMT.

Conclusion

The present systematic review showed inconsistent data on the effect of OMT in the treatment of medical conditions potentially associated with CID, however the OMT appears to be a safe approach. Further more robust trials are needed to determine the direction and magnitude of the effect of OMT and to generalize favorable results.  相似文献   

18.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   

19.
Receptor tyrosine kinases (RTKs), in response to their growth factor ligands, phosphorylate and activate downstream signals important for physiological development and pathological transformation. Increased expression, activating mutations and rearrangement fusions of RTKs lead to cancer, inflammation, pain, neurodegenerative diseases, and other disorders. Activation or over-expression of ALK, ROS1, TRK (A, B, and C), and RET are associated with oncogenic phenotypes of their respective tissues, making them attractive therapeutic targets. Cancer cDNA array studies demonstrated over-expression of TRK-A and ROS1 in a variety of cancers, compared to their respective normal tissue controls. We synthesized a library of small molecules that inhibit the above indicated RTKs with picomolar to nanomolar potency. The lead molecule GTx-186 inhibited RTK-dependent cancer cell and tumor growth. In vitro and in vivo growth of TRK-A-dependent IMR-32 neuroblastoma cells and ROS1-overexpressing NIH3T3 cells were inhibited by GTx-186. GTx-186 also inhibited inflammatory signals mediated by NFκB, AP-1, and TRK-A and potently reduced atopic dermatitis and air-pouch inflammation in mice and rats. Moreover, GTx-186 effectively inhibited ALK phosphorylation and ALK-dependent cancer cell growth. Collectively, the RTK inhibitor GTx-186 has a unique kinase profile with potential to treat cancer, inflammation, and neuropathic pain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号