首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kallikrein-related peptidases (KLKs) play a central role in skin desquamation. They are tightly controlled by specific inhibitors, including the lymphoepithelial Kazal-type inhibitor (LEKTI) encoded by SPINK5 and LEKTI-2 encoded by SPINK9. Herein, we identify SPINK6 as a selective inhibitor of KLKs in the skin. Unlike LEKTI but similar to LEKTI-2, SPINK6 possesses only one typical Kazal domain. Its mRNA was detected to be expressed at low levels in several tissues and was induced during keratinocyte differentiation. Natural SPINK6 was purified from human plantar stratum corneum extracts. Immunohistochemical analyses revealed SPINK6 expression in the stratum granulosum of human skin at various anatomical localizations and in the skin appendages, including sebaceous glands and sweat glands. SPINK6 expression was decreased in lesions of atopic dermatitis. Using KLK5, KLK7, KLK8, KLK14, thrombin, trypsin, plasmin, matriptase, prostasin, mast cell chymase, cathepsin G, neutrophil elastase, and chymotrypsin, inhibition with recombinant SPINK6 was detected only for KLK5, KLK7, and KLK14, with apparent Ki values of 1.33, 1070, and 0.5 nm, respectively. SPINK6 inhibited desquamation of human plantar callus in an ex vivo model. Our findings suggest that SPINK6 plays a role in modulating the activity of KLKs in human skin. A selective inhibition of KLKs by SPINK6 might have therapeutic potential when KLK activity is elevated.  相似文献   

2.
Kallikrein-related peptidases constitute a single family of 15 (chymo)trypsin-like proteases (KLK1–15) with pleiotropic physiological roles. Aberrant regulation of KLKs has been associated with diverse diseases such as hypertension, renal dysfunction, skin disorders, inflammation, neurodegeneration, and cancer. Recent studies suggested that coordinated activation and regulation of KLK activity are achieved via a complex network of interactions referred to as the “KLK activome.” However, it remains to be validated whether these hypothetical KLK activation cascade pathways are operative in vivo. In addition, KLKs have emerged as versatile signaling molecules. In summary, KLKs represent attractive biomarkers for clinical applications and potential therapeutic targets for common human pathologies.  相似文献   

3.
Kallikreins-related peptidases (KLKs) are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI). Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink)5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.  相似文献   

4.
Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with Ki around 1 nM, KLK4 with Ki = 27.3 nM, KLK6 with Ki = 140 nM, caspase-14 with a Ki approximating 1 μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members.  相似文献   

5.
Human tissue kallikrein-related peptidases (KLK) are a family of 15 genes located on chromosome 19q13.4 that encode secreted serine proteases with trypsin- and/or chymotrypsin-like activity. Relatively large levels of many KLKs are present in human cervico-vaginal fluid (CVF) and in the supernatant of cultured human vaginal epithelial cells. Many KLKs are also hormonally regulated in vaginal epithelial cells, particularly by glucocorticoids and estrogens. The physiological role of KLK in the vagina is currently unknown; however, analysis of the CVF proteome has revealed clues for potential KLK functions in this environment. Here, we detail potential roles for KLKs in cervico-vaginal physiology. First, we suggest that KLKs play a role in the vagina similar to their role in skin physiology: (1) in the desquamation of vaginal epithelial cells, similar to their activity in the desquamation of skin corneocytes; and (2) in their ability to activate antimicrobial proteins in CVF as they do in sweat. Consequently, we hypothesize that dysregulated KLK expression in the vagina could lead to the development of pathological conditions such as desquamative inflammatory vaginitis. Second, we propose that KLKs may play a role in premature rupture of membranes and pre-term birth through their cleavage of fetal membrane extracellular matrix proteins.  相似文献   

6.
Human tissue kallikreins (KLKs) are the largest family of secreted serine protease endopeptidases encoded by 15 genes clustered on chromosome 19q13.4. Multiple KLK enzymes are co-localized in the upper stratum granulosum and stratum corneum of human epidermis, and in associated appendages such as hair follicle epithelia and sweat glands. Until recently, kallikrein proteolytic activity in the skin was exclusively attributed to KLK5 and KLK7. However, wider cutaneous roles of kallikreins became evident in recent years as the proposal of KLK proteolytic activation cascades emerged. We postulate that these proteolytic enzymes may serve as promiscuous mediators of different skin barrier functions, since they are capable of proteolysing different substrates that govern skin desquamation, antimicrobial defense, and lipid permeability. Growing evidence now attests to potential kallikrein involvement in skin inflammation, pigmentation, and tumor suppression via their ability to target proteinase-activated receptor signaling pathways. Current knowledge on kallikrein roles in skin physiology and pathobiology is described in this review.  相似文献   

7.
Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.  相似文献   

8.
Human kallikrein 1-related peptidases (KLKs) form a subfamily of 15 extracellular (chymo)tryptic-like serine proteases. KLKs 4, 5, 13 and 14 display altered expression/activity in diverse pathological conditions, including cancer. However, their distinct (patho)physiological roles remain largely uncharacterized. As a step toward distinguishing their proteolytic functions, we attempt to define their primary and extended substrate specificities and identify candidate biological targets. Heterologously expressed KLKs 4, 5, 13 and 14 were screened against fluorogenic 7-amino-4-carbamoylmethylcoumarin positional scanning-synthetic combinatorial libraries with amino acid diversity at the P1-P4 positions. Our results indicate that these KLKs share a P1 preference for Arg. However, each KLK exhibited distinct P2-P4 specificities, attributable to structural variations in their surface loops. The preferred P4-P1 substrate recognition motifs based on optimal subsite occupancy were as follows: VI-QSAV-QL-R for KLK4; YFWGPV-RK-NSFAM-R for KLK5; VY-R-LFM-R for KLK13; and YW-KRSAM-HNSPA-R for KLK14. Protein database queries using these motifs yielded many extracellular targets, some of which represent plausible KLK substrates. For instance, cathelicidin, urokinase-type plasminogen activator, laminin and transmembrane protease serine 3 were retrieved as novel putative substrates for KLK4, 5, 13 and 14, respectively. Our findings may facilitate studies on the role of KLKs in (patho)physiology and can be used in the development of selective KLK inhibitors.  相似文献   

9.
Human kallikrein-related peptidases (KLKs) are (chymo)-trypsin-like serine proteinases that are expressed in a variety of tissues such as prostate, ovary, breast, testis, brain, and skin. Although their physiological functions have been only partly elucidated, many of the KLKs appear to be useful prognostic cancer markers, showing distinct correlations between their expression levels and different stages of cancer. Recent advances in the purification of 'new type' recombinant KLKs allowed solution of the crystal structures of KLK4, KLK5, KLK6, and KLK7. Along with these data, enzyme kinetic studies and extended substrate specificity profiling have led to an understanding of the non-prime-side substrate preferences of KLK4, 5, 6, and 7. The shape and polarity of the specificity pockets S1-S4 explain well their substrate preferences. KLK4, 5, and 6 exhibit trypsin-like specificity, with a strong preference for Arg at the P1 position of substrates. In contrast, KLK7 displays a unique chymotrypsin-like specificity for Tyr, which is also preferred at P2. All four KLKs show little specificity for P3 residues and have a tendency to accept hydrophobic residues at P4. Interestingly, for KLK4, 5, and 7 extended charged surface regions were observed that most likely serve as exosites for physiological substrates.  相似文献   

10.
Human kallikrein-related peptidases (KLKs) are a family of 15 serine proteases mainly known for their biomarker utility in various neoplastic and non-neoplastic diseases. Despite significant progress in understanding their clinical application, little is known about the activation mechanism(s) of this important family of enzymes. Emerging evidence indicates that KLKs are activated in a stepwise manner, which is a characteristic of proteolytic cascades. Thus far, KLK cascades have been implicated in semen liquefaction and skin desquamation. Many members of the KLK family have been reported to be active in seminal plasma and/or skin, suggesting their involvement in common proteolytic cascades. KLK14, in particular, is highly active and has recently been proposed as one of the key trypsin-like proteases involved in skin desquamation. This study aims to elucidate a probable cascade-mediated role of KLK14 by 1) examining KLK14-mediated cleavage of a heptapeptide library encompassing activation sites of the 15 KLKs and 2) verifying activation of certain candidate downstream targets of KLK14 (i.e. pro-KLK1, -KLK3, and -KLK11). Heptapeptides encompassing activation motifs of KLK2, -3, -5, and -11 were cleaved with a high (> or =85%) cleavage efficiency. Activation of these candidates was confirmed using full-length recombinant proteins. Pro-KLK11, -KLK3, and -KLK1 were rapidly activated in a concentration-dependent manner. Pro-KLK3 regulation was bidirectional because activation was followed by inactivation via internal cleavage of active KLK3. We are proposing a putative cascade model, operating through multiple KLKs. Identification of novel members of such proteolytic cascades will aid in further defining mechanisms involved in seminal/skin homeostasis.  相似文献   

11.
Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs)   总被引:1,自引:0,他引:1  
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn2+ ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α2-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.  相似文献   

12.
Human tissue kallikrein-related peptidases (KLKs) are 15 hormonally regulated genes on chromosome 19q13.4 encoding secreted serine proteases. Many KLKs are expressed throughout the female reproductive system and found in cervico-vaginal fluid (CVF). Immunohistochemistry was performed to determine KLK localization in the female reproductive system (fallopian tube, endometrium, cervix and vagina tissues). KLK levels were measured in CVF and saliva over the menstrual cycle to study whether KLKs are regulated by hormonal changes during the cycle. In vitro cleavage analysis was performed to establish whether KLKs may play a role in vaginal epithelial desquamation, mucus remodeling or processing of antimicrobial proteins. KLKs were localized in the glandular epithelium of the fallopian tubes and endometrium, the cervical mucus-secreting epithelium and vaginal stratified squamous epithelium. KLK levels peaked in CVF and saliva after ovulation. In vitro cleavage analysis confirmed KLKs 5 and 12 as capable of digesting desmoglein and desmocollin adhesion proteins and cervical mucin proteins 4 and 5B. KLK5 can digest defensin-1alpha, suggesting it may aid in cervico-vaginal host defense. We provide evidence of potential physiological roles for KLKs in cervico-vaginal physiology: in desquamation of vaginal epithelial cells, remodeling of cervical mucus and processing of antimicrobial proteins.  相似文献   

13.
Oral squamous cell carcinoma (OSCC) ranks among the top 8 causes of cancer death worldwide, with only a 60% 5-year survival rate, highlighting the need for discovery of novel biomarkers and therapeutic targets. We have previously reported that expression of a panel of serine proteinase kallikreins (KLK 5, 7, 8, and 10) is correlated with formation of more aggressive OSCC tumors in a murine orthotopic OSCC model and is elevated in human OSCC. Current studies focus on understanding the potential role of KLK5 in OSCC progression. In initial studies, KLK levels in malignant OSCC cells (SCC25) were compared with cells from normal oral mucosa (OKF/6) and pre-malignant oral keratinocytes (pp126) using qPCR. A marked elevation of all KLKs was observed in aggressive SCC25 cells relative to OKF/6 cells. In normal skin, KLKs are involved in desquamation during epidermal differentiation via proteolytic cleavage of the desmosomal cadherin component desmoglein 1 (Dsg1). As loss of cell-cell cohesion is prevalent in tumor metastasis, Dsg1 integrity was evaluated. Results show that SCC25 cells exhibit cleavage of Dsg1, which is blocked by proteinase inhibitor treatment as well as by siRNA silencing of KLK5 expression. Furthermore, cell-cell aggregation assays demonstrate that silencing of KLK5 enforces cell-cell adhesion; conversely, overexpression of KLK5 in normal oral mucosal cells (OKF/6) enhances cell dispersal. These data suggest that KLK5 may promote metastatic dissemination of OSCC by promoting loss of junctional integrity through cleavage of desmoglein 1.  相似文献   

14.
15.
16.
Human tissue kallikreins (KLKs or kallikrein-related peptidases) are a subgroup of extracellular serine proteases that act on a wide variety of physiological substrates, while they display aberrant expression patterns in certain types of cancer. Differential expression patterns lead to the exploitation of these proteins as new cancer biomarkers for hormone-dependent malignancies, in particular. The prostate-specific antigen or kallikrein-related peptidase 3 (PSA/KLK3) is an established tumor marker for the diagnosis and monitoring of prostate cancer. It is well documented that specific KLK genes are co-expressed in tissues and in various pathologies suggesting their participation in complex proteolytic cascades. Here, we review the currently established knowledge on the involvement of KLK proteolytic cascades in the regulation of physiological and pathological processes in prostate tissue and in skin. It is well established that the activity of KLKs is often regulated by auto-activation and subsequent autolytic internal cleavage leading to enzymatic inactivation, as well as by inhibitory serpins or by allosteric inhibition by zinc ions. Redistribution of zinc ions and alterations in their concentration due to physiological or pathological reasons activates specific KLKs initiating the kallikrein cascade(s). Recent studies on kallikrein substrate specificity allowed for the construction of a kallikrein interaction network involved in semen liquefaction and prostate cancer, as well as in skin pathologies, such as skin desquamation, psoriasis and cancer. Furthermore, we discuss the crosstalks between known proteolytic pathways and the kallikrein cascades, with emphasis on the activation of plasmin and its implications in prostate cancer. These findings may have clinical implications for the underlying molecular mechanism and management of cancer and other disorders in which KLK activity is elevated.  相似文献   

17.
While protease-activated receptors (PARs) are known to mediate signaling events in CNS, contributing both to normal function and pathogenesis, the endogenous activators of CNS PARs are poorly characterized. In this study, we test the hypothesis that kallikreins (KLKs) represent an important pool of endogenous activators of CNS PARs. Specifically, KLK1 and KLK6 were examined for their ability to evoke intracellular Ca(2+) flux in a PAR-dependent fashion in NSC34 neurons and Neu7 astrocytes. Both KLKs were also examined for their ability to activate mitogen-activated protein kinases (extracellular signal-regulated kinases, C-Jun N-terminal kinases, and p38) and protein kinase B (AKT) intracellular signaling cascades. Cumulatively, these studies show that KLK6, but not KLK1, signals through PARs. KLK6 evoked intracellular Ca(2+) flux was mediated by PAR1 in neurons and both PAR1 and PAR2 in astrocytes. Importantly, both KLK1 and KLK6 altered the activation state of mitogen-activated protein kinases and AKT, suggestive of important roles for each in CNS neuron and glial differentiation, and survival. The cellular specificity of CNS-KLK activity was underscored by observations that both proteases promoted AKT activation in astrocytes, but inhibited such signaling in neurons. PAR1 and bradykinin receptor inhibitors were used to demonstrate that KLK1-mediated activation of extracellular signal-regulated kinases in neurons occurred in a non-PAR, bradykinin 2 (B2) receptor-dependent fashion, while similar signaling by KLK6 was mediated by the combined activation of PAR1 and B2. Cumulatively results indicate KLK6, but not KLK1 is an activator of CNS PARs, and that both KLKs are poised to signal in a B2 receptor-dependent fashion to regulate multiple signal transduction pathways relevant to CNS physiologic function and dysfunction.  相似文献   

18.
Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1-6 (rLEKTI(1-6)), domains 6-8 and partial domain 9 (rLEKTI(6-9')), domains 9-12 (rLEKTI(9-12)), and domains 12-15 (rLEKTI(12-15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1-6), rLEKTI(6-9'), and rLEKTI(9-12) with Ki values in the range of 2.3-28.4 nm, 6.1-221 nm, and 2.7-416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12-15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated.  相似文献   

19.
20.
Introduction: Kallikrein-related peptidases (KLKs) are a family of serine peptidases that are deregulated in numerous pathological conditions, with a multitude of KLK-mediated functional roles implicated in the progression of cancer. Advances in multidimensional mass spectrometry (MS)-based proteomics have facilitated the quantitative measurement of deregulated KLK expression in cancer, identifying certain KLKs, as well as their substrates, as potential cancer biomarkers.

Areas covered: In this review, we discuss how these approaches have been utilized for KLK biomarker discovery and unbiased substrate determination in complex protein pools that mimic the in vivo extracellular microenvironment.

Expert commentary: Although a limited number of studies have been performed, the quantity of information generated has greatly improved our understanding of the functional roles of KLKs in cancer progression. In addition, these data suggest additional means through which deregulated KLK expression may be targeted in cancer treatment, highlighting the potential therapeutic value of these state-of-the-art MS-based studies.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号