首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na+ and N-methyl-d-glucamine (NMDG+) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death.  相似文献   

2.
P2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened β2- and β3-sheets and their linker (loop β2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor. We show that deletion of this longer structural element leads to the loss of P2X7 function. Furthermore, by combining mutagenesis, chimera construction, surface expression, and protein stability analysis, we found that the deletion of the longer β2,3-loop affects P2X7 surface expression but, more importantly, that this loop affects channel gating of P2X7. We propose that the longer β2,3-sheets may have a negative regulatory effect on a loop on the head domain and on the structural element formed by E171 and its surrounding regions. Understanding the role of the unique structure of the P2X7 receptor in the gating process will aid in the development of selective drugs targeting this subtype.  相似文献   

3.
A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP.  相似文献   

4.
P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine.  相似文献   

5.
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis.  相似文献   

6.
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.  相似文献   

7.
Recent evidence suggests that interleukin-1β (IL-1β), which was originally identified as a proinflammatory cytokine, is also required in the brain for memory processes. We have previously shown that IL-1β synthesis in the hippocampus is dependent on P2X7 receptor (P2X7R), which is an ionotropic receptor of ATP. To substantiate the role of P2X7R in both brain IL-1β expression and memory processes, we examined the induction of IL-1β mRNA expression in the hippocampus of wild-type (WT) and homozygous P2X7 receptor knockout mice (P2X7R−/−) following a spatial memory task. The spatial recognition task induced both IL-1β mRNA expression and c-Fos protein activation in the hippocampus of WT but not of P2X7R−/− mice. Remarkably, P2X7R−/− mice displayed spatial memory impairment in a hippocampal-dependant task, while their performances in an object recognition task were unaltered. Taken together, our results show that P2X7R plays a critical role in spatial memory processes and the associated hippocampal IL-1β mRNA synthesis and c-Fos activation.  相似文献   

8.
9.
The potential to use Schwann cells (SCs) in neural repair for patients suffering from neurotrauma and neurodegenerative diseases is well recognized. However, significant cell death after transplantation hinders the clinical translation of SC-based therapies. Various factors may contribute to the death of transplanted cells. It is known that prolonged activation of P2X7 purinoceptors (P2X7R) can lead to death of certain types of cells. In this study, we show that rat SCs express P2X7R and exposure of cultured SCs to high concentrations of ATP (3–5 mM) or a P2X7R agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced significant cell death rapidly. High concentrations of ATP and BzATP increased ethidium uptake by SCs, indicating increased membrane permeability to large molecules, a typical feature of prolonged P2X7R activation. SC death, as well as ethidium uptake, induced by ATP was blocked by an irreversible P2X7R antagonist oxidized ATP (oxATP) or a reversible P2X7R antagonist A438079. oxATP also significantly inhibits the increase of intracellular free calcium induced by minimolar ATP concentrations. Furthermore, ATP did not cause death of SCs isolated from P2X7R-knockout mice. All these results suggest that P2X7R is responsible for ATP-induced SC death in vitro. When rat SCs were treated with oxATP before transplantation into uninjured rat spinal cord, 35% more SCs survived than untreated SCs 1 week after transplantation. Moreover, 58% more SCs isolated from P2X7R-knockout mice survived after being transplanted into rat spinal cord than SCs from wild-type mice. This further confirms that P2X7R is involved in the death of transplanted SCs. These results indicate that targeting P2X7R on SCs could be a potential strategy to improve the survival of transplanted cells. As many other types of cells, including neural stem cells, also express P2X7R, deactivating P2X7R may improve the survival of other types of transplanted cells.  相似文献   

10.
The peptide segment of the second variable loop of HIV-1 spanning positions 166–181 harbors two functionally important sites. The first, spanning positions 179–181, engages the human α4β7 integrin receptor which is involved in T-cell gut-homing and may play a role in human immunodeficiency virus (HIV)-host cell interactions. The second, at positions 166–178, is a major target of anti-V2 antibodies elicited by the ALVAC/AIDSVAX vaccine used in the RV144 clinical trial. Notably, these two sites are directly adjacent, but do not overlap. Here, we report the identity of a second determinant of α4β7 binding located at positions 170–172 of the V2 loop. This segment – tripeptide QRV170–172– is located within the second site, yet functionally affects the first site. The absence of this segment abrogates α4β7 binding in peptides bearing the same sequence from position 173–185 as the V2 loops of the RV144 vaccines. However, peptides exhibiting V2 loop sequences from heterologous HIV-1 strains that include this QRV170–172 motif bind the α4β7 receptor on cells. Therefore, the peptide segment at positions 166–178 of the V2 loop of HIV-1 viruses appears to harbor a cryptic determinant of α4β7 binding. Prior studies show that the anti-V2 antibody response elicited by the RV144 vaccine, along with immune pressure inferred from a sieve analysis, is directed to this same region of the V2 loop. Accordingly, the anti-V2 antibodies that apparently reduced the risk of infection in the RV144 trial may have functioned by blocking α4β7-mediated HIV-host cell interactions via this cryptic determinant.  相似文献   

11.
12.
As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion.  相似文献   

13.
Stimulation of P2X receptors by ATP in vascular smooth muscle cells (VSMCs) is proposed to mediate vascular tone. However, understanding of P2X receptor-mediated actions in human blood vessels is limited, and therefore, the current work investigates the role of P2X receptors in freshly isolated small human gastro-omental arteries (HGOAs). Expression of P2X1 and P2X4 receptor subunit messenger RNA (mRNA) and protein was identified in individual HGOA VSMCs using RT-PCR and immunofluorescent analysis and using Western blot in multi-cellular preparations. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l, a selective P2X receptor agonist, evoked robust increases in [Ca2+]i in fluo-3-loaded HGOA VSMCs. Pre-incubation with 1 μmol/l NF279, a selective P2X receptor antagonist, reduced the amplitude of αβ-meATP-induced increase in [Ca2+]i by about 70 %. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l produced similar contractile responses in segments of HGOA, and these contractions were greatly reduced by 2 μmol/l NF449, a selective P2X receptor inhibitor. These data suggest that VSMCs from HGOA express P2X1 and P2X4 receptor subunits with homomeric P2X1 receptors likely serving as the predominant target for extracellular ATP.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9415-6) contains supplementary material, which is available to authorized users.  相似文献   

14.
TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1–5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3–5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general.  相似文献   

15.
The P2X7 receptor (P2X7R) is uniquely associated with two distinct cellular responses: activation of a dye-permeable pathway allowing passage of molecules up to 900 Da and rapid release of the pro-inflammatory cytokine, interleukin-1β (IL-1β), from activated macrophage. How this dye uptake path forms and whether it is involved in IL-1β release has not been known. Pannexin-1 is a recently identified protein found to physically associate with the P2X7R. Inhibition of pannexin-1 does not alter P2X7R ion channel activation or associated calcium flux but blocks one component of P2X7R-induced dye uptake and unmasks a slower, previously undetected, dye uptake pathway. Inhibition of pannexin-1 blocks P2X7R-mediated IL-1β release from macrophage as well as release mediated by other stimuli which couple to activation of capase-1 and additionally inhibits the release of interleukin-1α, a member of the IL-1 family whose processing does not require caspase-1 activation. Thus, pannexin-1 is linked to both dye uptake and IL-1β release but via distinct mechanisms.  相似文献   

16.
While the role of estrogen receptor-related receptor alpha (ERRα) in chondrogenesis has been investigated, the involvement of ERR gamma (ERRγ) has not been determined. To assess the effect of increased ERRγ activity on cartilage development in vivo, we generated two transgenic (Tg) lines overexpressing ERRγ2 via a chondrocyte-specific promoter; the two lines exhibited ∼3 and ∼5 fold increased ERRγ2 protein expression respectively in E14.5 Tg versus wild type (WT) limbs. On postnatal day seven (P7), we observed a 4–10% reduction in the size of the craniofacial, axial and appendicular skeletons in Tg versus WT mice. The reduction in bone length was already present at birth and did not appear to involve bones that are derived via intramembranous bone formation as the bones of the calvaria, clavicle, and the mandible developed normally. Histological analysis of P7 growth plates revealed a reduction in the length of the Tg versus WT growth plate, the majority of which was attributable to a reduced proliferative zone. The reduced proliferative zone paralleled a decrease in the number of Ki67-positive proliferating cells, with no significant change in apoptosis, and was accompanied by large cell-free swaths of cartilage matrix, which extended through multiple zones of the growth plate. Using a bioinformatics approach, we identified known chondrogenesis-associated genes with at least one predicted ERR binding site in their proximal promoters, as well as cell cycle regulators known to be regulated by ERRγ. Of the genes identified, Col2al, Agg, Pth1r, and Cdkn1b (p27) were significantly upregulated, suggesting that ERRγ2 negatively regulates chondrocyte proliferation and positively regulates matrix synthesis to coordinate growth plate height and organization.  相似文献   

17.
18.
19.
The aggregation of amyloid-β (Aβ) peptides plays a crucial role in the etiology of Alzheimer’s disease (AD). Recently, it has been reported that an A2T mutation in Aβ can protect against AD. Interestingly, a nonpolar A2V mutation also has been found to offer protection against AD in the heterozygous state, although it causes early-onset AD in homozygous carriers. Since the conformational landscape of the Aβ monomer is known to directly contribute to the early-stage aggregation mechanism, it is important to characterize the effects of the A2T and A2V mutations on Aβ1–42 monomer structure. Here, we have performed extensive atomistic replica-exchange molecular dynamics simulations of the solvated wild-type (WT), A2V, and A2T Aβ1–42 monomers. Our simulations reveal that although all three variants remain as collapsed coils in solution, there exist significant structural differences among them at shorter timescales. A2V exhibits an enhanced double-hairpin population in comparison to the WT, similar to those reported in toxic WT Aβ1–42 oligomers. Such double-hairpin formation is caused by hydrophobic clustering between the N-terminus and the central and C-terminal hydrophobic patches. In contrast, the A2T mutation causes the N-terminus to engage in unusual electrostatic interactions with distant residues, such as K16 and E22, resulting in a unique population comprising only the C-terminal hairpin. These findings imply that a single A2X (where X = V or T) mutation in the primarily disordered N-terminus of the Aβ1–42 monomer can dramatically alter the β-hairpin population and switch the equilibrium toward alternative structures. The atomistically detailed, comparative view of the structural landscapes of A2V and A2T variant monomers obtained in this study can enhance our understanding of the mechanistic differences in their early-stage aggregation.  相似文献   

20.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein–coupled receptors (S1P1–5). Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO)) mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT) mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF) collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF) levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1) or transforming growth factor β1 (TGF-β1) levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号