首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background aimsMultipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown.MethodsMSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to “rescue” the proliferative capacity of MSCs.ResultshPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS.ConclusionshPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity.  相似文献   

2.
《Cytotherapy》2014,16(4):454-459
Background aimsTo obtain a cell product competent for clinical use in terms of cell dose and biologic properties, bone marrow-derived mesenchymal stem cells (MSCs) must be expanded ex vivo.MethodsA retrospective analysis was performed of records of 76 autologous MSC products used in phase I or II clinical studies performed in a cohort of cardiovascular patients. In all cases, native MSCs present in patient bone marrow aspirates were separated and expanded ex vivo.ResultsThe cell products were classified in two groups (A and B), according to biologic properties and expansion time (ex vivo passages) to reach the protocol-established cell dose. In group A, the population of adherent cells obtained during the expansion period (2 ± 1 passages) was composed entirely of MSCs and met the requirements of cell number and biologic features as established in the respective clinical protocol. In group B, in addition to MSCs, we observed during expansion a high proportion of ancillary cells, characterized as osteoclast precursor cells. In this case, although the biologic properties of the resulting MSC product were not affected, the yield of MSCs was significantly lower. The expansion cycles had to be increased (3 ± 1 passages).ConclusionsThese results suggest that the presence of osteoclast precursor cells in bone marrow aspirates may impose a limit for the proper clinical use of ex vivo expanded autologous bone marrow-derived MSCs.  相似文献   

3.
Background aimsMultipotent stromal cells, also called mesenchymal stromal cells (MSCs), are potentially valuable as a cellular therapy because of their differentiation and immunosuppressive properties. As the result of extensive heterogeneity of MSCs, quantitative approaches to measure differentiation capacity between donors and passages on a per-cell basis are needed.MethodsHuman bone marrow-derived MSCs were expanded to passages P3, P5 and P7 from eight different donors and were analyzed for colony-forming unit capacity (CFU), cell size, surface marker expression and forward/side-scatter analysis by flow cytometry. Adipogenic differentiation potential was quantified with the use of automated microscopy. Percentage of adipogenesis was determined by quantifying nuclei and Nile red–positive adipocytes after automated image acquisition.ResultsMSCs varied in expansion capacity and increased in average cell diameter with passage. CFU capacity decreased with passage and varied among cell lines within the same passage. The number of adipogenic precursors varied between cell lines, ranging from 0.5% to 13.6% differentiation at P3. Adipogenic capacity decreased significantly with increasing passage. MSC cell surface marker analysis revealed no changes caused by passaging or donor differences.ConclusionsWe measured adipogenic differentiation on a per-cell basis with high precision and accuracy with the use of automated fluorescence microscopy. We correlated these findings with other quantitative bioassays to better understand the role of donor variability and passaging on CFU, cell size and adipogenic differentiation capacity in vitro. These quantitative approaches provide valuable tools to measure MSC quality and measure functional biological differences between donors and cell passages that are not revealed by conventional MSC cell surface marker analysis.  相似文献   

4.
Mesenchymal stem cell preparations have been proposed for muscle regeneration in musculoskeletal disorders. Although MSCs have great in vitro expansion potential and possess the ability to differentiate into several mesenchymal lineages, myogenesis has proven to be much more difficult to induce. We have recently demonstrated that Pax3, the master regulator of the embryonic myogenic program, enables the in vitro differentiation of a murine mesenchymal stem cell line (MSCB9-Pax3) into myogenic progenitors. Here we show that injection of these cells into cardiotoxin-injured muscles of immunodeficient mice leads to the development of muscle tumors, resembling rhabdomyosarcomas. We then extended these studies to primary human mesenchymal stem cells (hMSCs) isolated from bone marrow. Upon genetic modification with a lentiviral vector encoding PAX3, hMSCs activated the myogenic program as demonstrated by expression of myogenic regulatory factors. Upon transplantation, the PAX3-modified MSCs did not generate rhabdomyosarcomas but rather, resulted in donor-derived myofibers. These were found at higher frequency in PAX3-transduced hMSCs than in mock-transduced MSCs. Nonetheless, neither engraftment of PAX3-modified or unmodified MSCs resulted in improved contractility. Thus these findings suggest that limitations remain to be overcome before MSC preparations result in effective treatment for muscular dystrophies.  相似文献   

5.
Background aimsMesenchymal stromal cells (MSCs) have been studied as cell therapy to treat a vast array of diseases. In clinical MSC production, the isolated cells must undergo extensive ex vivo expansion to obtain a sufficient dose of MSCs for the investigational treatment. However, extended tissue culture is fraught with potential hazards, including contamination and malignant transformation. Changes of gene expression with prolonged culture may alter the therapeutic potential of the cells. Increasing the recovery of MSCs from the freshly harvested bone marrow allowing for less ex vivo expansion would represent a major advance in MSC therapy.MethodsHuman bone marrow cells from eight healthy donors were processed using a marrow filter device and, in parallel, using buoyant density centrifugation by two independent investigators. The initial nucleated cell recovery and the final yield, immunophenotype and trilineage differentiation potential of second-passage MSCs were examined.ResultsThe marrow filter device generated significantly greater initial cell recovery requiring less investigator time and resulted in approximately 2.5-fold more MSCs after the second passage. The immunophenotype and differentiation potential of MSCs isolated using the two methods were equivalent and consistent with the defining criteria. The two independent investigators generated comparable results.ConclusionsThis novel filter device is a fast, efficient and reliable system to isolate MSCs and should greatly expedite pre-clinical and clinical investigations of MSC therapy.  相似文献   

6.
Background aimsThe therapeutic potential of human mesenchymal stromal cells (MSCs) has generated considerable interest in a wide variety of areas. MSC banking is feasible, but the optimal technique of cryopreservation remains to be determined.MethodsTo reduce dimethyl sulfoxide (DMSO) concentration in cryopreservation medium, DMSO was replaced with sucrose or trehalose. To increase cell survival and proliferation rates after thawing and to eliminate the need for fetal bovine serum (FBS), neuropeptides of the vasoactive intestinal peptide/glucose-dependent insulinotropic peptide/pituitary adenylate cyclase activating polypeptide family were added to the cryopreservation medium. Cell survival was analyzed by a trypan blue dye exclusion assay. Cell proliferation of cryopreserved MSCs was determined after 7 days of culture.ResultsNo significant differences in cell survival rates were detected between cryopreservation solutions with 5% and 10% DMSO, independently of the addition of trehalose or sucrose. Cell proliferation rates tended to be highest when MSCs were frozen in 5% DMSO + trehalose. FBS could be replaced by human albumin (HA) without loss in cell survival and proliferation potential. With FBS, the addition of neuropeptides could increase cell survival and proliferation rates. Without FBS or HA, cell survival and proliferation rates in the presence of neuropeptides were comparable to rates achieved with FBS or HA.ConclusionsClassic cryopreservation with 10% DMSO could be replaced by 5% DMSO + 30 mmol/L trehalose. FBS could be replaced by HA or neuropeptides without loss in cell survival and proliferation potential. The addition of neuropeptides in the cryopreservation medium containing FBS could increase the cell proliferation rate and consequently cellular output.  相似文献   

7.
《Cytotherapy》2014,16(11):1501-1510
Background aimsTraumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Developing effective protocols for the administration of mesenchymal stromal cells (MSCs) is a promising therapeutic strategy to treat TBI. It is important to develop alternatives to direct parenchymal injection at the injury site because direct injection is an expensive and invasive technique. Subarachnoid transplantation, a minimally invasive and low-risk procedure, may be an important and clinically applicable strategy. The aim of this study was to test the therapeutic effect of subarachnoid administration of MSCs on functional outcome 2 months after an experimental TBI in rats.MethodsTwo months after TBI, 30 female Wistar rats were divided into 3 groups (n = 10 in each group): sham, MSC (received 2 × 106 MSCs) and saline (received only saline) groups. Neurological function, brain and spinal cords samples and cerebrospinal fluid were studied.ResultsNo significant differences were found in neurological evaluation and after histological analysis; differences in the expression of neurotrophins were present but were not statistically significant. MSCs survived in the host tissue, and some expressed neural markers.ConclusionsSimilar to direct parenchymal injections, transplanted MSCs survive, migrate to the injury cavity and differentiate into mature neural cell types for at least 6 months after engraftment. These results open the possibility that MSC administration through subarachnoid administration may be a treatment for the consequences of TBI. The transplantation technique and cell number should be adjusted to obtain functional outcome and neurotrophin production differences.  相似文献   

8.
BACKGROUNDMultipotent mesenchymal stromal cells (MSCs) are widely used in the clinic due to their unique properties, namely, their ability to differentiate in all mesenchymal directions and their immunomodulatory activity. Healthy donor MSCs were used to prevent the development of acute graft vs host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT). The administration of MSCs to patients was not always effective. The MSCs obtained from different donors have individual characteristics. The differences between MSC samples may affect their clinical efficacy.AIMTo study the differences between effective and ineffective MSCs.METHODSMSCs derived from the bone marrow of a hematopoietic stem cells donor were injected intravenously into allo-BMT recipients for GVHD prophylaxis at the moment of blood cell reconstitution. Aliquots of 52 MSC samples that were administered to patients were examined, and the same cells were cultured in the presence of peripheral blood mononuclear cells (PBMCs) from a third-party donor or treated with the pro-inflammatory cytokines IL-1β, IFN and TNF. Flow cytometry revealed the immunophenotype of the nontreated MSCs, the MSCs cocultured with PBMCs for 4 d and the MSCs exposed to cytokines. The proportions of CD25-, CD146-, CD69-, HLA-DR- and PD-1-positive CD4+ and CD8+ cells and the distribution of various effector and memory cell subpopulations in the PBMCs cocultured with the MSCs were also determined.RESULTSDifferences in the immunophenotypes of effective and ineffective MSCs were observed. In the effective samples, the mean fluorescence intensity (MFI) of HLA-ABC, HLA-DR, CD105, and CD146 was significantly higher. After MSCs were treated with IFN or cocultured with PBMCs, the HLA-ABC, HLA-DR, CD90 and CD54 MFI showed a stronger increase in the effective MSCs, which indicated an increase in the immunomodulatory activity of these cells. When PBMCs were cocultured with effective MSCs, the proportions of CD4+ and CD8+central memory cells significantly decreased, and the proportion of CD8+CD146+ lymphocytes increased more than in the subpopulations of lymphocytes cocultured with MSC samples that were ineffective in the prevention of GVHD; in addition, the proportion of CD8+effector memory lymphocytes decreased in the PBMCs cocultured with the effective MSC samples but increased in the PBMCs cocultured with the ineffective MSC samples. The proportion of CD4+CD146+ lymphocytes increased only when cocultured with the inefficient samples.CONCLUSIONFor the first time, differences were observed between MSC samples that were effective for GVHD prophylaxis and those that were ineffective. Thus, it was shown that the immunomodulatory activity of MSCs depends on the individual characteristics of the MSC population.  相似文献   

9.
《Cytotherapy》2023,25(1):33-45
Background aimsMesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be “polarized” by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported.MethodsIn this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists.ResultsIn these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro.ConclusionsTLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.  相似文献   

10.
Background aimsWe recently showed that co-transplantation of mesenchymal stromal cells (MSCs) improves islet function and revascularization in vivo. Pre-transplant islet culture is associated with the loss of islet cells. MSCs may enhance islet cell survival or function by direct cell contact mechanisms and soluble mediators. We investigated the capacity of MSCs to improve islet cell survival or β-cell function in vitro using direct and indirect contact islet-MSC configurations. We also investigated whether pre-culturing islets with MSCs improves islet transplantation outcome.MethodsThe effect of pre-culturing islets with MSCs on islet function in vitro was investigated by measuring glucose-stimulated insulin secretion. The endothelial cell density of fresh islets and islets cultured with or without MSCs was determined by immunohistochemistry. The efficacy of transplanted islets was tested in vivo using a syngeneic streptozotocin-diabetic minimal islet mass model. Graft function was investigated by monitoring blood glucose concentrations.ResultsIndirect islet-MSC co-culture configurations did not improve islet function in vitro. Pre-culturing islets using a direct contact MSC monolayer configuration improved glucose-stimulated insulin secretion in vitro, which correlated with superior islet graft function in vivo. MSC pre-culture had no effect on islet endothelial cell number in vitro or in vivo.ConclusionsPre-culturing islets with MSCs using a direct contact configuration maintains functional β-cell mass in vitro and the capacity of cultured islets to reverse hyperglycemia in diabetic mice.  相似文献   

11.
《Cytotherapy》2014,16(1):111-121
Background aimsMesenchymal stromal cells (MSCs) resemble an essential component of the bone marrow niche for maintenance of stemness of hematopoietic progenitor cells (HPCs). Perturbation of the C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor-1α (SDF-1α) axis by plerixafor (AMD3100) mobilizes HPCs from their niche; however, little is known about how plerixafor affects interaction of HPCs and MSCs in vitro.MethodsWe monitored cell division kinetics, surface expression of CD34 and CXCR4, migration behavior and colony-forming frequency of HPCs on co-culture with MSCs either with or without exposure to plerixafor.ResultsCo-culture with MSCs significantly accelerated cell division kinetics of HPCs. Despite this, the proportion of CD34+ cells was significantly increased on co-culture, whereas the expression of CXCR4 was reduced. In addition, co-culture with MSCs led to significantly higher colony-forming capacity and enhanced migration rate of HPCs compared with mono-culture conditions. The composition of MSC sub-populations—and conversely their hematopoiesis supportive functions—may be influenced by culture conditions. We compared the stromal function of MSCs isolated with three different culture media. Overall, the supporting potentials of these MSC preparations were quite similar. Perturbation by the CXCR4-antagonist plerixafor reduced the cell division kinetics of HPCs on co-culture with MSCs. However, the progenitor cell potential of the HPCs as reflected by colony-forming capacity was not affected by plerixafor.ConclusionsThese results support the notion that the CXCR4/SDF-1α axis is critical for HPC-MSC interaction with regard to migration, adhesion and regulation of proliferation but not for maintenance of primitive progenitor cells.  相似文献   

12.
BackgroundMany data are available on expansion protocols for mesenchymal stromal cells (MSCs) for both experimental settings and manufacturing for clinical trials. However, there is a lack of information on translation of established protocols for Good Manufacturing Practice (GMP) from validation to manufacturing for clinical application. We present the validation and translation of a standardized pre-clinical protocol for isolation and expansion of MSCs for a clinical trial for reconstitution of alveolar bone.MethodsKey parameters of 22 large-scale expansions of MSCs from bone marrow (BM) for validation were compared with 11 expansions manufactured for the clinical trial “Jaw bone reconstruction using a combination of autologous mesenchymal stromal cells and biomaterial prior to dental implant placement (MAXILLO1)” aimed at reconstruction of alveolar bone.ResultsDespite variations of the starting material, the robust protocol led to stable performance characteristics of expanded MSCs. Manufacturing of the autologous advanced therapy medicinal product MAXILLO-1-MSC was possible, requiring 21 days for each product. Transport of BM aspirates and MSCs within 24 h was guaranteed. MSCs fulfilled quality criteria requested by the national competent authority. In one case, the delivered MSCs developed a mosaic in chromosomal finding, showing no abnormality in differentiation capacity, growth behavior or surface marker expression during long-term culture. The proportion of cells with the mosaic decreased in long-term culture and cells stopped growth after 38.4 population doublings.ConclusionsClinical use of freshly prepared MSCs, manufactured according to a standardized and validated protocol, is feasible for bone regeneration, even if there was a long local distance between manufacturing center and clinical site. Several parameters, such as colony forming units fibroblasts (CFU-F), percentage of CD34+ cells, cell count of mononuclear cells (MNCs) and white blood cells (WBCs), of the BM may serve as a predictive tool for the yield of MSCs and may help to avoid unnecessary costs for MSC manufacturing due to insufficient cell expansion rates.  相似文献   

13.
《Cytotherapy》2022,24(10):1049-1059
Background aimsMesenchymal stromal cells (MSCs) are one of the most frequently used cell types in regenerative medicine and cell therapy. Generating sufficient cell numbers for MSC-based therapies is constrained by (i) their low abundance in tissues of origin, which imposes the need for significant ex vivo cell expansion; (ii) donor-specific characteristics, including MSC frequency/quality, that decline with disease state and increasing age; and (iii) cellular senescence, which is promoted by extensive cell expansion and results in decreased therapeutic functionality. The final yield of a manufacturing process is therefore primarily determined by the applied isolation procedure and its efficiency in isolating therapeutically active cells from donor tissue. To date, MSCs are predominantly isolated using media supplemented with either serum or its derivatives, which poses safety and consistency issues.MethodsTo overcome these limitations while enabling robust MSC production with constant high yield and quality, the authors developed a chemically defined biomimetic surface coating called isoMATRIX (denovoMATRIX GmbH, Dresden, Germany) and tested its performance during isolation of MSCs.ResultsThe isoMATRIX facilitates the isolation of significantly higher numbers of MSCs in xenogeneic (xeno)/serum-free and chemically defined conditions. The isolated cells display a smaller cell size and higher proliferation rate than those derived from a serum-containing isolation procedure and a strong immunomodulatory capacity. The high proliferation rates can be maintained up to 5 passages after isolation and cells even benefit from a switch towards a proliferation-specific MSC matrix (myMATRIX MSC) (denovoMATRIX GmbH, Dresden, Germany).ConclusionIn sum, isoMATRIX promotes enhanced xeno/serum-free and chemically defined isolation of human MSCs and supports consistent and reliable cell performance for improved stem cell-based therapies.  相似文献   

14.
《Cytotherapy》2014,16(7):915-926
BackgroundThere is a growing interest in mesenchymal stem cells (MSCs) because they are regarded as good candidates for cell therapy. Adipose tissue represents an easily accessible source to derive mesenchymal stem cells (Ad-MSCs) non-invasively in large numbers. The aim of this study was to evaluate a defined serum-free medium for in vitro expansion of MSCs as a prerequisite for their clinical use.MethodsAdipose tissue was isolated from healthy donors. Cells were isolated and expanded for five passages in serum-free medium (Mesencult-XF) and Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (DMEM-FBS). MSC morphology, marker expression, viability, population doubling time and differentiation potential toward osteogenic and adipogenic lineages were evaluated. Bone marrow MSCs were included as controls.ResultsAd-MSCs cultured in Mesencult-XF had shorter population doubling time (33.3 ± 13.7 h) compared with those cultured in DMEM-FBS (54.3 ± 41.0 h, P < 0.05). Ad-MSCs cultured in Mesencult-XF displayed a stable morphology and surface marker expression and a higher differentiation potential in comparison to Ad-MSCs cultured in DMEM-FBS.ConclusionsThe defined serum-free and xeno-free Mesencult-XF media appear to be a good choice for Ad-MSCs, but it is not as good in supporting culture of bone marrow MSCs when the cells are to be used for clinical purposes.  相似文献   

15.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

16.
《Cytotherapy》2023,25(9):956-966
Background aimsMesenchymal stromal cells (MSCs) are used to treat immune-related disorders, including graft-versus-host disease. Upon intravenous infusion, MSCs trigger the instant blood-mediated inflammatory response, resulting in activation of both complement and coagulation cascades, and are rapidly cleared from circulation. Despite no/minimal engraftment, long-term immunoregulatory properties are evident. The aim of this study was to establish the effects of blood exposure on MSC viability and immunomodulatory functions.MethodsHuman, bone marrow derived MSCs were exposed to human plasma +/– heat inactivation or whole blood. MSC number, viability and cellular damage was assessed using the JC-1 mitochondrial depolarization assay and annexin V staining. C3c binding and expression of the inhibitory receptors CD46, CD55 and CD59 and complement receptors C3aR and C5aR were evaluated by flow cytometry. MSCs pre-exposed to plasma were cultured with peripheral blood mononuclear cells (PBMCs) and monocyte subsets characterized by flow cytometry. The PBMC and MSC secretome was assessed using enzyme-linked immunosorbent assays against tumor necrosis factor alpha, interleukin (IL)-6 and IL-10. Monocyte recruitment towards the MSC secretome was evaluated using Boyden chambers and screened for chemotactic factors including monocyte chemoattractant protein (MCP)-1. MSC effects on the peripheral immune repertoire was also evaluated in whole blood by flow cytometry.ResultsPlasma induced rapid lysis of 57% of MSCs, which reduced to 1% lysis with heat inactivation plasma. Of those cells that were not lysed, C3c could be seen bound to the surface of the cells, with a significant swelling of the MSCs and induction of cell death. The MSC secretome reduced monocyte recruitment, in part due to a reduction in MCP-1, and downregulated PBMC tumor necrosis factor alpha secretion while increasing IL-6 levels in the co-culture supernatant. A significant decrease in CD14+ monocytes was evident after MSC addition to whole blood alongside a significant increase in IL-6 levels, with those remaining monocytes demonstrating an increase in classical and decrease in non-classical subsets. This was accompanied by a significant increase in both mononuclear and polymorphonuclear myeloid-derived suppressor cells.ConclusionsThis study demonstrates that a significant number of MSCs are rapidly lysed upon contact with blood, with those surviving demonstrating a shift in their phenotype, including a reduction in the secretion of monocyte recruitment factors and an enhanced ability to skew the phenotype of monocytes. Shifts in the innate immune repertoire, towards an immunosuppressive profile, were also evident within whole blood after MSC addition. These findings suggest that exposure to blood components can promote peripheral immunomodulation via multiple mechanisms that persists within the system long after the infused MSCs have been cleared.  相似文献   

17.
《Cytotherapy》2014,16(5):683-691
Background aimsMesenchymal stromal cell (MSC) transplantation holds great promise for use in medical therapies. Several key features of MSCs, including efficient cell growth, generation of sufficient cell numbers and safety, as determined by teratoma formation, make MSCs an ideal candidate for clinical use. However, MSCs derived under standard culture conditions, co-cultured with animal by-products, are inappropriate for therapy because of the risks of graft rejection and animal virus transmission to humans. Alternative serum sources have been sought for stem cell production.MethodsWe demonstrate for the first time that human serum from umbilical cord blood (hUCS) is an effective co-culture reagent for MSC production from Wharton's jelly MSCs (WJMSCs). Ten umbilical cords were used to generate parallel cultures of WJMSC lines under medium supplemented with hUCS and embryonic stem cell-qualified fetal bovine serum. The WJMSC lines from each medium were analyzed and compared with regard to cell line derivation, proliferation ability and characteristic stability.ResultsThe phenotypic characteristics of WJMSC derived under either medium showed no differences. WJMSC lines derived under hUCS medium displayed comparable primary culture cell outgrowth, lineage differentiation capacity and cell recovery after cryopreservation compared with supplementation with embryonic stem cell-qualified fetal bovine serum medium. However, superior cell proliferation rates and retention of in vitro propagation (>22 passages) were observed in WJMSC cultures supplemented with hUCS. Additionally, more robust population doubling times were observed in hUCS-supplemented cultures.ConclusionsWe conclude that hUCS is an efficient and effective serum source for animal product–free WJMSC line production and can generate MSC lines that may be appropriate for therapeutic use.  相似文献   

18.
《Cytotherapy》2022,24(2):137-148
Background aimsMesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function.MethodsThree MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores.ResultsSignificant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88).ConclusionsThe work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.  相似文献   

19.
《Cytotherapy》2014,16(8):1080-1091
Background aimsCeliac disease is caused by a dysregulated immune response toward dietary gluten, whose only treatment is a lifelong gluten-free diet. We investigated the effects of mesenchymal stromal cells (MSCs) on gliadin-specific T cells, which are known to induce intestinal lesions, in view of a possible use as new therapy.MethodsBone marrow–derived MSCs and gliadin-specific T-cell lines were obtained from allogeneic donors and mucosal specimens of celiac patients, respectively. The immunosuppressant effect of MSCs was evaluated in terms of proliferative response and interferon (IFN)-γ production upon gliadin stimulation of long-term T-cell lines; the immunomodulant effect was assessed in terms of apoptotic rate, immunophenotype and cytokine profile of short-term T-cell lines generated in the presence of MSCs. Different MSC:T-cell ratios were applied, and statistics were performed as appropriate.ResultsMSCs inhibited both proliferative response and IFN-γ production of long-term T-cell lines in a dose-dependent manner while limiting the expansion of short-term T-cell lines by increasing the apoptotic rate. Moreover, a reduction of the CD4+ population and expansion of the regulatory FoxP3+ subset were found in T-cell lines cultured with MSCs, in which a significant decrease of interleukin (IL)-21, IFN-γ and IL-10 paralleled by an upregulation of transforming growth factor-β1, IL-6 and IL-8 were observed. Finally, an increase of the indoleamine 2,3-dioxygenase activity was found, possibly playing a key role in mediating these effects.ConclusionsMSCs exert potent immunomodulant effects on gliadin-specific T cells, which may be exploited for future therapeutic application in celiac disease.  相似文献   

20.
Mesenchymal stem cells (MSC) are known to be a valuable cell source for tissue engineering and regenerative medicine. However, one of the main limiting steps in their clinical use is the amplification step. MSC expansion on microcarriers has emerged during the last few years, fulfilling the lack of classical T‐flasks expansion. Even if the therapeutic potential of MSC as aggregates has been recently highlighted, cell aggregation during expansion has to be avoided. Thus, MSC culture on microcarriers has still to be improved, notably concerning cell aggregation prevention. The aim of this study was to limit cell aggregation during MSC expansion on Cytodex‐1®, by evaluating the impact of several culture parameters. First, MSC cultures were performed at different agitation rates (0, 25, and 75 rpm) and different initial cell densities (25 and 50 × 106 cell g?1 Cytodex‐1®). Then, the MSC aggregates were put into contact with additional available surfaces (T‐flask, fresh and used Cytodex‐1®) at different times (before and after cell aggregation). The results showed that cell aggregation was partly induced by agitation and prevented in static cultures. Moreover, cell aggregation was dependent on cell density and correlated with a decrease in the total cell number. It was however shown that the aggregated organization could be dissociated when in contact with additional surfaces such as T‐flasks or fresh Cytodex‐1® carriers. Finally, cell aggregation could be successfully limited in spinner flask by adding fresh Cytodex‐1® carriers before its onset. Those results indicated that MSC expansion on agitated Cytodex‐1® microcarriers could be performed without cell aggregation, avoiding a decrease in total cell number. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号