共查询到20条相似文献,搜索用时 15 毫秒
1.
人胚胎干细胞有着巨大的医学应用前景,但人胚胎干细胞要求的生长条件很高,体外很难模拟其生长的体内环境,因此控制人胚胎干细胞的生长常不理想,而使用鼠胚胎成纤维细胞(MEF)作为滋养层则存在动物源性污染的问题。该文阐述人羊膜上皮细胞(HAEC)的特点及其作为滋养层培养胚胎干细胞的现状,并探讨基因组DNA甲基化修饰在胚胎干细胞分化过程中的作用,为建立更优化的培养系统提供依据。 相似文献
2.
Miljković D Momčilović M Stanojević Z Rašić D Mostarica-Stojković M 《Journal of neurochemistry》2011,118(2):205-214
Experimental autoimmune encephalomyelitis (EAE) is a model of multiple sclerosis. Dark Agouti rats immunized with spinal cord homogenate (SCH) and carbonyl iron (CI), as an adjuvant, develop severe hyperacute form of EAE. They succumb to EAE earlier and have higher clinical scores and lethality rate in comparison to counterparts immunized with SCH + complete Freund's adjuvant. There is no difference in the number of cells or in histological presentation of the CNS infiltrates of rats immunized with the two adjuvants. However, there are more granulocytes, NK and NKT cells, and less CD4(+) T cells in the spinal cord infiltrates of SCH + CI-immunized animals. Nitric oxide (NO)-generating enzyme inducible NO synthase have higher expression in spinal cord of SCH + CI-immunized rats, and this corresponds to more intensive nitrotyrosine formation in the CNS tissue of these rats. Abundant infiltration of granulocytes and NK cells into the CNS and excessive generation of peroxynitrite within the CNS of SCH + CI-immunized rats might account for the severe neurological deficits induced by immunization with CI. These factors should be closely examined in the fulminant forms of multiple sclerosis and acute disseminated encephalomyelitis, as they could represent a promising targets for therapy. 相似文献
3.
CD8+T细胞在多发性硬化中的致病性作用 总被引:3,自引:0,他引:3
多发性硬化是T细胞介导的自身免疫性疾病。先前对它的研究大多集中在CD4 T细胞的致病和调节性作用上,但是,近几年来越来越多的证据表明CD8 T细胞也参与多发性硬化的病理损伤过程。 CD8 T细胞存在于MS病灶部位,髓鞘抗原特异性CD8 T细胞也从MS患者的血液和脑脊液中分离得到,CD8 T细胞通过直接杀伤或释放细胞因子和趋化因子等间接参与MS的病理过程。本文就近几年关于CD8 T细胞在多发性硬化中的致病性作用的研究进展予以介绍。 相似文献
4.
5.
Protein carbonylation, the non-enzymatic addition of aldehydes or ketones to specific amino acid residues, has been implicated in the pathophysiology of multiple sclerosis. In this study, we investigated whether protein carbonyls also accumulate in the spinal cord of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE). Western blots analysis after derivatization with dinitrophenyl hydrazine (oxyblot) showed elevated protein carbonylation at the time of maximal clinical disability. During the same period glutathione levels were substantially reduced, suggesting a causal relationship between these two markers. In contrast, lipid peroxidation products accumulated in EAE spinal cord well before the appearance of neurological symptoms. Carbonyl staining was not restricted to inflammatory lesions but present throughout the spinal cord particularly in neuronal cell bodies and axons. By 2-dimensional-oxyblot, we identified several cytoskeletal proteins, including β-actin, glial acidic fibrillary protein, and the neurofilament proteins as the major targets of carbonylation. These findings were confirmed by pull-down experiments, which also showed an increase in the number of carbonylated β-actin molecules and a decrease in that of oxidized neurofilament proteins in EAE. These data suggest the possibility that oxidation targets neurofilament proteins for degradation, which may contribute to axonal pathology observed in multiple sclerosis and EAE. 相似文献
6.
《Cytotherapy》2014,16(1):33-40
Background aimsAmniotic membrane (AM), the innermost layer of human placenta, is composed of a single layer of epithelial cells, a basement membrane and an avascular stroma. The AM has many functions and properties, among which angiogenic modulatory and immunoregulatory effects are applicable in cancer therapy. Because these functions belong to amniotic epithelial cells, in this study we compared the anti-cancer effect of amniotic epithelial cells and the whole AM.MethodsThe effect of the AM and the amniotic epithelial cells on cancer cell apoptosis was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunocytochemistry. The effect of the AM on angiogenesis in conditions both with and without epithelial cells was also evaluated using rat aortic ring assay.ResultsThere was a decrease in cancer cell viability after adding either AM or amniotic epithelial cell supernatant to cancer cells. A significant increase in caspase-3 and caspase-8 expression in cancer cells treated with amniotic epithelial cell supernatant was observed. The recorded media also demonstrated the possible induction of apoptosis in cancer cells treated with the amniotic epithelial cell supernatant. In the aorta ring assay, the AM showed an anti-angiogenic effect in the presence of its epithelial cells; however, this effect was altered to initiate angiogenesis when amniotic epithelial cells were removed from the AM.ConclusionsThese results suggest that amniotic epithelial cells, with their anti-angiogenic effect and induction of apoptosis, are candidates for cancer therapeutic agents in the near future. 相似文献
7.
《Cell Adhesion & Migration》2013,7(3):179-189
Mesenchymal stem/stromal cells (MSCs) can be isolated from most adult tissues and hold considerable promise for tissue regenerative therapies. Some of the potential advantages that MSCs have over other adult stem cell types include: (1) their relative ease of isolation, culture and expansion; (2) their immunomodulatory properties; (3) they can provide trophic support to injured tissues; (4) they can be transduced by retroviral vectors at a high efficiency; (5) they have an ability to home to sites of inflammation and injury. Collectively these characteristics suggest that MSCs are attractive vehicles for cell and gene therapy applications. In the current study, we investigated whether transplantation of human adipose-derived MSCs (Ad-MSCs) engineered to overexpress the anti-inflammatory cytokine interleukin (IL)-4 was efficacious in experimental autoimmune encephalomyelitis (EAE). Ad-MSCs transduced with a bicistronic lentiviral vector encoding mouse IL-4 and enhanced green fluorescent protein (Ad-IL4-MSCs) stably expressed, relatively high levels of both transgenes. Importantly the phenotypic and functional attributes of Ad-IL4-MSCs, such as the expression of homing molecules and differentiation capacity, was not altered by the transduction process. Notably, the early administration of Ad-IL4-MSCs in mice with EAE at the time of T-cell priming attenuated clinical disease. This protective effect was associated with a reduction in peripheral MOG-specific T-cell responses and a shift from a pro- to an anti-inflammatory cytokine response. These data suggest that the delivery of Ad-MSCs genetically engineered to express anti-inflammatory cytokines may provide a rational approach to promote immunomodulation and tissue protection in a number of inflammatory and degenerative diseases including multiple sclerosis. 相似文献
8.
Natalie L. Payne Ashanti Dantanarayana Guizhi Sun Leon Moussa Sally Caine Courtney McDonald Daniella Herszfeld Claude C.A. Bernard Christopher Siatskas 《Cell Adhesion & Migration》2012,6(3):179-189
Mesenchymal stem/stromal cells (MSCs) can be isolated from most adult tissues and hold considerable promise for tissue regenerative therapies. Some of the potential advantages that MSCs have over other adult stem cell types include: (1) their relative ease of isolation, culture and expansion; (2) their immunomodulatory properties; (3) they can provide trophic support to injured tissues; (4) they can be transduced by retroviral vectors at a high efficiency; (5) they have an ability to home to sites of inflammation and injury. Collectively these characteristics suggest that MSCs are attractive vehicles for cell and gene therapy applications. In the current study, we investigated whether transplantation of human adipose-derived MSCs (Ad-MSCs) engineered to overexpress the anti-inflammatory cytokine interleukin (IL)-4 was efficacious in experimental autoimmune encephalomyelitis (EAE). Ad-MSCs transduced with a bicistronic lentiviral vector encoding mouse IL-4 and enhanced green fluorescent protein (Ad-IL4-MSCs) stably expressed, relatively high levels of both transgenes. Importantly the phenotypic and functional attributes of Ad-IL4-MSCs, such as the expression of homing molecules and differentiation capacity, was not altered by the transduction process. Notably, the early administration of Ad-IL4-MSCs in mice with EAE at the time of T-cell priming attenuated clinical disease. This protective effect was associated with a reduction in peripheral MOG-specific T-cell responses and a shift from a pro- to an anti-inflammatory cytokine response. These data suggest that the delivery of Ad-MSCs genetically engineered to express anti-inflammatory cytokines may provide a rational approach to promote immunomodulation and tissue protection in a number of inflammatory and degenerative diseases including multiple sclerosis. 相似文献
9.
Akimasa SENO Takumi MARUHASHI Tomonori KAIFU Rikio YABE Noriyuki FUJIKADO Guangyu MA Tetsuro IKARASHI Shigeru KAKUTA Yoichiro IWAKURA 《Experimental Animals》2015,64(2):109-119
Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor containing a
carbohydrate recognition domain in its extracellular portion and an immunoreceptor
tyrosine–based inhibitory motif, which transduces negative signals into cells, in its
cytoplasmic portion. Previously, we showed that Dcir–/– mice
spontaneously develop autoimmune diseases such as enthesitis and sialadenitis due to
excess expansion of dendritic cells (DCs), suggesting that DCIR is critically important
for the homeostasis of the immune system. In this report, we analyzed the role of DCIR in
the development of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease
model for multiple sclerosis. We found that EAE was exacerbated in
Dcir–/– mice associated with severe demyelination of the
spinal cords. The number of infiltrated CD11c+ DCs and CD4+ T cells
into spinal cords was increased in Dcir–/– mice. Recall
proliferative response of lymph node cells was higher in
Dcir–/– mice compared with wild-type mice. These
observations suggest that DCIR is an important negative regulator of the immune system,
and Dcir–/– mice should be useful for analyzing the roles of
DCIR in an array of autoimmune diseases. 相似文献
10.
11.
12.
13.
Francisco J. Medina-Fernandez Begoña M. Escribano Eduardo Agüera Macarena Aguilar-Luque Montserrat Feijoo Evelio Luque 《Free radical research》2017,51(5):460-469
Experimental autoimmune encephalomyelitis (EAE) reproduces a multiple sclerosis (MS)-like experimental model. The main objective was to evaluate the effect of extremely low-frequency electromagnetic fields (EL-EMF) application, like a paradigm of transcranial magnetic stimulation (TMS) in the development of EAE. Rats were injected with a single dose of 150?μg of myelin oligodendrocyte glycoprotein (MOG, fragment 35–55) to produce experimental MS. To assess the effect of TMS application in EAE, the rats were treated with TMS (60?Hz and 0.7?mT) for 2?h in the morning, once a day, 5 days a week, during 3 weeks. TMS was applied to the head. The effect of TMS on EAE was evaluated as motor symptoms and, oxidative and cell damage. The data showed that MOG induced motor symptoms as tail paralysis and limb paresis/paralysis, oxidative stress and cell death similar to MS when compared with control animals. Importantly, TMS application attenuated motor symptoms, oxidative and cell damage, whereas it increased antioxidant system. Our findings suggest that: (i) MOG reproduces an experimental model of MS characterised by oxidative and cell damage; and (ii) TMS application decreases oxidative stress and cell death induced by MOG. 相似文献
14.
RhoA is one of the best-studied members of Rho GTPases. Experimental autoimmune neuritis (EAN), which is characterized by infiltration of T cells and macrophages into the peripheral nervous system, is an autoantigen-specific T-cell-mediated animal model of human Guillain-Barré Syndrome. In this study, RhoA expression has been investigated in the dorsal/ventral roots of EAN rats by immunohistochemistry. A significant accumulation of RhoA+ cells was observed on Day 12, with a maximum around Day 15, correlating to the clinical severity of EAN. In dorsal/ventral roots of EAN, RhoA+ cells were seen in perivascular areas but also in the parenchyma. Furthermore, double-labelling experiments showed that the major cellular sources of RhoA were reactive macrophages and T cells. In conclusion, this is the first demonstration of the presence of RhoA in the dorsal/ventral roots of EAN. The time courses and cellular sources of RhoA together with the functions of RhoA indicate that RhoA may function to facilitate macrophage and T-cell infiltration in EAN and therefore could be a potential therapeutic target. 相似文献
15.
Shipeng Dang Huanbai Xu Congfeng Xu Wei Cai Qian Li Yiji Cheng Min Jin Ru-Xing Wang Yongde Peng Yi Zhang Changping Wu Xiaozhou He Bing Wan Yanyun Zhang 《Autophagy》2014,10(7):1301-1315
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy. 相似文献
16.
17.
We recently reported that the proteasomal peptidase activities are altered in the cerebellum of mice with myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). To determine whether these fluctuations are caused by proteasome activation/inactivation and/or changes in the levels of individual β subunits, we characterized the proteasome subunit composition by western blotting. The results show that the rise in proteasomal peptidase activity in acute EAE correlates with an augmented expression of inducible β subunits whereas the decline in activity in chronic EAE correlates with a reduction in the amount of standard β subunits. Using pure standard (s) and immuno (i) 20S particles for calibration, we determined that the changes in the levels of catalytic subunits account for all of the fluctuations in peptidase activities in EAE. The i-20S and s-20S proteasome were found to degrade carbonylated β-actin with similar efficiency, suggesting that the amount of protein carbonyls in EAE may be controlled by the activity of both core particles. We also found an increase in proteasome activator 11S regulatory particle and a decrease in inhibitor proteasome inhibitor with molecular mass of 31 kDa levels in acute EAE, reflecting a response to inflammation. Elevated levels of 19S regulatory particle and 11S regulatory particle in chronic EAE, however, may occur in response to diminished proteasomal activity in this phase. These findings are central towards understanding the altered proteasomal physiology in inflammatory demyelinating disorders. 相似文献
18.
目的:通过体外诱导分化实验,探讨人羊膜上皮细胞(hAECs)向胰岛素分泌细胞(ISCs)分化的能力。方法:采用胰蛋白酶消化法从人羊膜组织分离提取hAECs,用流式细胞仪和免疫细胞化学法进行鉴定。取第3代hAECs在含尼克酰胺和N2补充物的无血清培养基中诱导培养,分别于诱导不同时间采用免疫细胞化学法检测胰岛素和β2微球蛋白的表达,采用放射免疫法检测上清液中胰岛素含量,采用RT-PCR检测胰岛素mRNA和胰十二指肠同源异型盒因子-1(PDX-1)mRNA的表达。结果:①hAECs高表达CD29、CD73、CD166和CK19;②hAECs诱导组第7、142、1天胰岛素阳性细胞百分率分别为74.00%±1.73%、75.33%±1.15%和75.67%±0.58%,而对照组未见胰岛素阳性细胞;③hAECs诱导组第7、14、21天培养物上清液中胰岛素含量分别达(328.47±3.22)μIU/ml、(332.26±1.22)μIU/ml和(329.68±2.57)μIU/ml,均显著高于对照组(P均<0.01);④hAECs诱导前后均有PDX-1 mRNA和β2微球蛋白表达,胰岛素mRNA表达仅见于诱导组。结论:hAECs能分化为ISCs,在Ⅰ型糖尿病细胞移植治疗方面具有潜在应用前景。 相似文献
19.
Bing Tan Weixin Yuan Jinying Li Pengjie Yang Zhen Ge Jia Liu Chen Qiu Xiaolong Zhu Cong Qiu Dongmei Lai Lihe Guo Liang Wang Luyang Yu 《Cytotherapy》2018,20(10):1247-1258
Background aims
The chronic inflammation of autoimmune diseases develops repetitive localized destruction or systemic disorders, represented by Hashimoto's thyroiditis (HT) and Systemic lupus erythematosus (SLE) respectively. Currently, there are no efficient ways to treat these autoimmune diseases. Therefore, it is critically important to explore new therapeutic strategies. The aim of this study was to investigate the therapeutic efficacy of human amniotic epithelial cells (hAECs) in murine models of HT and SLE.Methods
Experimental autoimmune thyroiditis (EAT) was induced in female CBA/J mice by immunization with porcine thyroglobulin (pTg). hAECs were intravenously administered at different time points during the disease course. MRL-Faslpr mice, a strain with spontaneously occurring SLE, were intravenously administered hAECs when their sera were positive for both anti-nuclear antibodies (ANAs) and anti-double-stranded DNA (anti-dsDNA) antibodies. Two weeks after the last cell transplantation, blood and tissue samples were collected for histological examination and immune system analysis.Results
hAECs prevented lymphocytes infiltration into the thyroid and improved the damage of thyroid follicular in EAT mice. Correspondingly, hAECs administration reduced anti-thyroglobulin antibodies (TGAb), anti-thyroid peroxidase antibodies (TPOAb) and thyroid stimulating hormone (TSH) levels. SLE mice injected with hAECs appeared negative for ANAs and anti-dsDNA antibodies and showed reduced immunoglobulin profiles. Mechanically, hAECs modulated the immune cells balance in EAT and SLE mice, by downregulating the ratios of Th17/Treg cells in both EAT and SLE mice and upregulating the proportion of B10 cells in EAT mice. This was confirmed by in vitro assay, in which hAECs inhibited the activation of EAT mice-derived splenocytes. Moreover, hAECs improved the cytokine environment in both EAT and SLE mice, by suppressing the levels of IL-17A and IFN-γ and enhancing TGF-β.Conclusion
These results demonstrated the immunoregulatory effect of hAECs for inflammation inhibition and injury recovery in HT and SLE murine models. The current study may provide a novel therapeutic strategy for these autoimmune diseases in clinic. 相似文献20.
Xi Jia Tianyu Zhai Bing Wang Qiuming Yao Qian Li Kaida Mu Jin-an Zhang 《Journal of cellular physiology》2019,234(8):12442-12450
Type 1 regulatory T (Tr1) cell is a special type of T regulatory cells with surface molecular markers such as lymphocyte-activation gene 3 and CD49b. A key property of Tr1 cells is the capability to produce high-level interleukin 10 (IL-10) upon activation, in a FOXP3-independent manner. The immunosuppressive function of IL-10 producing Tr1 cells has been extensively studied for many years. Autoimmune diseases (AIDs) are conditions in which the immune system breaks down and starts to attack the body. AIDs include inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis (MS), type 1 diabetes mellitus, Greaves' disease, and so forth. In recent years, more and more studies have documented that the number of Tr1 cells is decreased and the function is inhibited in a variety of AIDs, among which MS is the most widely studied. The protocol for engineering Tr1 cell therapy has been established and is gradually being used in clinical practice in recent years. Tr1 cell therapy has been proven to be safe and effective, but it is mainly involved in myeloid leukemia, graft versus host disease currently. Its therapeutic role in AIDs still needs to be further explored. In this study, we will summarize the research advances of Tr1 cells in AIDs, which will provide useful information for treating AIDs through Tr1 cell therapy in the future. 相似文献