首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify and characterize a gene important for DCDC function, dim-3 (defective in methylation-3), which encodes the nuclear import chaperone NUP-6 (Importin α). The critical mutation in dim-3 results in a substitution in an ARM repeat of NUP-6 and causes a substantial loss of H3K9me3 and DNA methylation. Surprisingly, nuclear transport of all known proteins involved in histone and DNA methylation, as well as a canonical transport substrate, appear normal in dim-3 strains. Interactions between DCDC members also appear normal, but the nup-6dim-3 allele causes the DCDC members DIM-5 and DIM-7 to mislocalize from heterochromatin and NUP-6dim-3 itself is mislocalized from the nuclear envelope, at least in conidia. GCN-5, a member of the SAGA histone acetyltransferase complex, also shows altered localization in dim-3, raising the possibility that NUP-6 is necessary to localize multiple chromatin complexes following nucleocytoplasmic transport.  相似文献   

3.
4.
The alpha subunit of the avian myeloblastosis virus DNA polymerase could be readily purified to near homogeneity using a polyuridylic acid-Sepharose column chromatography step.  相似文献   

5.
The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis. Yeast two-hybrid and direct pulldown assays revealed that the N-terminal domain of the large subunit of primase (p58N) directly interacts with the C-terminal domain of the catalytic subunit of polα (p180C). We found that a complex of the C-terminal domain of the catalytic subunit of polα with the second subunit (p180C-p70) stimulated primase activity, whereas the whole catalytically active heterodimer of polα (p180ΔN-p70) inhibited RNA synthesis by primase. Conversely, the polα catalytic domain without the C-terminal part (p180ΔN-core) possessed a much higher propensity to extend the RNA primer than the two-subunit polα (p180ΔN-p70), suggesting that p180C and/or p70 are involved in the negative regulation of DNA pol activity. We conclude that the interaction between p180C, p70, and p58 regulates the proper primase and polymerase function. The composition of the template DNA is another important factor determining the activity of the complex. We have found that polα activity strongly depends on the sequence of the template and that homopyrimidine runs create a strong barrier for DNA synthesis by polα.  相似文献   

6.
A central region of the β2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from β1 and β7 to give the chimeras β2RN1 and β2RN7. Whilst the former construct failed to form heterodimer at the cell surface with αL, the later of these could be expressed together with the αL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the β2RB1 chimera failed to support LFA-1 expression. Thus the β1 specific residues of this region affect the interaction with the αL subunit. Whereas the αLβ2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the αLβ2BN1 and αLβ2BN7, as well as the αLβ2BN7, variants are more adhesive than the wildtype. These results suggest that an authentic β2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.  相似文献   

7.
8.
A key set of reactions for the initiation of new DNA strands during herpes simplex virus-1 replication consists of the primase-catalyzed synthesis of short RNA primers followed by polymerase-catalyzed DNA synthesis (i.e. primase-coupled polymerase activity). Herpes primase (UL5-UL52-UL8) synthesizes products from 2 to ∼13 nucleotides long. However, the herpes polymerase (UL30 or UL30-UL42) only elongates those at least 8 nucleotides long. Surprisingly, coupled activity was remarkably inefficient, even considering only those primers at least 8 nucleotides long, and herpes polymerase typically elongated <2% of the primase-synthesized primers. Of those primers elongated, only 4–26% of the primers were passed directly from the primase to the polymerase (UL30-UL42) without dissociating into solution. Comparing RNA primer-templates and DNA primer-templates of identical sequence showed that herpes polymerase greatly preferred to elongate the DNA primer by 650–26,000-fold, thus accounting for the extremely low efficiency with which herpes polymerase elongated primase-synthesized primers. Curiously, one of the DNA polymerases of the host cell, polymerase α (p70-p180 or p49-p58-p70-p180 complex), extended herpes primase-synthesized RNA primers much more efficiently than the viral polymerase, raising the possibility that the viral polymerase may not be the only one involved in herpes DNA replication.Herpes simplex virus 1 (HSV-1)2 encodes seven proteins essential for replicating its double-stranded DNA genome; five of these encode the heterotrimeric helicase-primase (UL5-UL52-UL8 gene products) and the heterodimeric polymerase (UL30-UL42 gene products) (1, 2). The helicase-primase unwinds the DNA at the replication fork and generates single-stranded DNA for both leading and lagging strand synthesis. Primase synthesizes short RNA primers on the lagging strand that the polymerase presumably elongates using dNTPs (i.e. primase-coupled polymerase activity). These two protein complexes are thought to replicate the viral genome on both the leading and lagging strands (1, 2).Previous studies have focused on the helicase-primase and polymerase separately. The helicase-primase contains three subunits, UL5, UL52, and UL8 in a 1:1:1 ratio (35). The UL5 subunit has helicase-like motifs and the UL52 subunit has primase-like motifs, yet the minimal active complex that demonstrates either helicase or primase activities contains both UL5 and UL52 (6, 7). Although the UL8 subunit has no known catalytic activity, several functions have been proposed, including enhancing helicase and primase activities, enhancing primer synthesis on ICP8 (the HSV-1 single-stranded binding protein)-coated DNA strands, and facilitating formation of the replisome (812). Although primase will synthesize short (23 nucleotides long) primers on a variety of template sequences, synthesis of longer primers up to 13 nucleotides long requires the template sequence, 3′-deoxyguanidine-pyrimidine-pyrimidine-5′ (13). Primase initiates synthesis at the first pyrimidine via the polymerization of two purine NTPs (13). Even after initiation at this sequence, however, the vast majority of products are only 2–3 nucleotides long (13, 14).The herpes polymerase consists of the UL30 subunit, which has polymerase and 3′ → 5′ exonuclease activities (1, 2), and the UL42 subunit, which serves as a processivity factor (1517). Unlike most processivity factors that encircle the DNA, the UL42 protein binds double-stranded DNA and thus directly tethers the polymerase to the DNA (18). Using pre-existing DNA primer-templates as the substrate, the heterodimeric polymerase (UL30-UL42) incorporates dNTPs at a rate of 150 s–1, a rate much faster than primer synthesis (for primers >7 nucleotides long, 0.0002–0.01 s–1) (19, 20).We examined primase-coupled polymerase activity by the herpes primase and polymerase complexes. Although herpes primase synthesizes RNA primers 2–13 nucleotides long, the polymerase only effectively elongates those at least 8 nucleotides long. Surprisingly, the polymerase elongated only a small fraction of the primase-synthesized primers (<1–2%), likely because of the polymerase elongating RNA primer-templates much less efficiently than DNA primer-templates. In contrast, human DNA polymerase α (pol α) elongated the herpes primase-synthesized primers very efficiently. The biological significance of these data is discussed.  相似文献   

9.
DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.  相似文献   

10.
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-ACnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase α (Polα) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-ACnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7+, which encodes a catalytic subunit of Polα. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Polα. These results suggest that Mcl1 and Polα are required for propagation of centromere chromatin structures during DNA replication.  相似文献   

11.
12.
Different pri1 and pri2 conditional mutants of Saccharomyces cerevisiae altered, respectively, in the small (p48) and large (p58) subunits of DNA primase, show an enhanced rate of both mitotic intrachromosomal recombination and spontaneous mutation, to an extent which is correlated with the severity of their defects in cell growth and DNA synthesis. These effects might be attributable to the formation of nicked and gapped DNA molecules that are substrates for recombination and error-prone repair, due to defective DNA replication in the primase mutants. Furthermore, pri1 and pri2 mutations inhibit sporulation and affect spore viability, with the unsporulated mutant cells arresting with a single nucleus, suggesting that DNA primase plays a critical role during meiosis. The observation that all possible pairwise combinations of two pri1 and two pri2 alleles are lethal provides further evidence for direct interaction of the primase subunits in vivo. Immunopurification and immunoprecipitation studies on wild-type and mutant strains suggest that the small subunit has a major role in determining primase activity, whereas the large subunit directly interacts with DNA polymerase α, and either mediates or stabilizes association of the p48 polypeptide in the DNA polymerase α-primase complex.  相似文献   

13.
14.
To investigate the potential of DNA polymerase α as a marker for DNA replication in phytoplankton, two gene fragments that showed a high degree of similarity with eukaryotic DNA polymerase α were cloned from two strains of a diatom, Skeletonema costatum (Greville) Cleve. The gene fragments amplified with the polymerase chain reaction were 397 and 396 bp in length, respectively. The deduced amino acid sequences showed 44% to 61% similarity to the corresponding regions of DNA polymerase α sequences of eukaryotic organisms ranging from yeast to humans. The similarity was especially high in three evolutionarily conserved regions within the amplified fragments. Further, hybridization patterns from Southern blotting confirmed that the amplified fragments were an integral part on the genome of S. costatum. In batch cultures abundant messenger of DNA polymerase α appeared in the late exponential phase and the early stationary phase. This pattern suggests that DNA polymerase α expression is associated with actively dividing cells. Received October 27, 1998; accepted November 13, 1998.  相似文献   

15.
The dnaE gene of Escherichia coli encodes the DNA polymerase (α subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.  相似文献   

16.
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β. Pre-steady-state kinetic studies have shown that the Pol λ-DNA complex binds both correct and incorrect nucleotides 130-fold tighter, on average, than the DNA polymerase β-DNA complex, although the base substitution fidelity of both polymerases is 10− 4 to 10− 5. To better understand Pol λ's tight nucleotide binding affinity, we created single-substitution and double-substitution mutants of Pol λ to disrupt the interactions between active-site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active-site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding to each of the common structural moieties in the following order: triphosphate ? base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and the template base led to a moderate increase in Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template.  相似文献   

17.
In bacteria, chromosome replication is initiated by binding of the DnaA initiator protein to DnaA boxes located in the origin of chromosomal replication (oriC). This leads to DNA helix opening within the DNA-unwinding element. Helicobacter pylori oriC, the first bipartite origin identified in Gram-negative bacteria, contains two subregions, oriC1 and oriC2, flanking the dnaA gene. The DNA-unwinding element region is localized in the oriC2 subregion downstream of dnaA. Surprisingly, oriC2–DnaA interactions were shown to depend on DNA topology, which is unusual in bacteria but is similar to initiator–origin interactions observed in higher organisms. In this work, we identified three DnaA boxes in the oriC2 subregion, two of which were bound only as supercoiled DNA. We found that all three DnaA boxes play important roles in orisome assembly and subsequent DNA unwinding, but different functions can be assigned to individual boxes. This suggests that the H. pylori oriC may be functionally divided, similar to what was described recently for Escherichia coli oriC. On the basis of these results, we propose a model of initiation complex formation in H. pylori.  相似文献   

18.
19.
20.
DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号