首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and progression of hepatocellular carcinoma (HCC) have been associated with abnormal cellular metabolism. Gene Expression Profiling Interactive Analysis RNA sequencing data revealed caveolin-1 (CAV-1) and hexokinase 2 (HK2) messenger RNA (mRNA) were significantly upregulated in human HCC compared with normal tissues, and high HK2 expression was associated with significantly poorer overall survival in HCC ( p < 0.05). CAV-1 and HK2 mRNA and protein expression were upregulated and positively correlated in 42 fresh human HCC tissues compared with tumor-adjacent normal tissues. Overexpression of CAV-1 or HK2 in SMMC-7721 and HepG2 HCC cells enhanced glucose and lactate metabolism and increased cell migration and invasion in transwell assays; knocking down CAV-1 or HK2 had the opposite effects. Overexpression of CAV-1 increased HK2 expression; overexpression of HK2 did not affect CAV-1 expression. Knocking down HK2 partially reversed the ability of CAV-1 to promote cellular metabolism, invasion, and migration in HCC, indicating CAV-1 enhances glycolysis, invasion, and metastasis in HCC cells via HK2-dependent mechanism. Further studies of the function and relationship between CAV-1 or HK2 expression are warranted to explore the potential of these proteins as metabolic targets for the treatment of HCC.  相似文献   

2.
Impaired macroautophagy/autophagy and high levels of glycolysis are prevalent in liver cancer. However, it remains unknown whether there is a regulatory relationship between autophagy and glycolytic metabolism. In this study, by utilizing cancer cells with basal or impaired autophagic flux, we demonstrated that glycolytic activity is negatively correlated with autophagy level. The autophagic degradation of HK2 (hexokinase 2), a crucial glycolytic enzyme catalyzing the conversion of glucose to glucose-6-phosphate, was found to be involved in the regulation of glycolysis by autophagy. The Lys63-linked ubiquitination of HK2 catalyzed by the E3 ligase TRAF6 was critical for the subsequent recognition of HK2 by the autophagy receptor protein SQSTM1/p62 for the process of selective autophagic degradation. In a tissue microarray of human liver cancer, the combination of high HK2 expression and high SQSTM1 expression was shown to have biological and prognostic significance. Furthermore, 3-BrPA, a pyruvate analog targeting HK2, significantly decreased the growth of autophagy-impaired tumors in vitro and in vivo (p < 0.05). By demonstrating the regulation of glycolysis by autophagy through the TRAF6- and SQSTM1-mediated ubiquitination system, our study may open an avenue for developing a glycolysis-targeting therapeutic intervention for treatment of autophagy-impaired liver cancer.  相似文献   

3.
Hexokinase II (HK2), a key enzyme involved in glucose metabolism, is regulated by growth factor signaling and is required for initiation and maintenance of tumors. Here we show that metabolic stress triggered by perturbation of receptor tyrosine kinase FLT3 in non–acute myeloid leukemia cells sensitizes cancer cells to autophagy inhibition and leads to excessive activation of chaperone-mediated autophagy (CMA). Our data demonstrate that FLT3 is an important sensor of cellular nutritional state and elucidate the role and molecular mechanism of CMA in metabolic regulation and mediating cancer cell death. Importantly, our proteome analysis revealed that HK2 is a CMA substrate and that its degradation by CMA is regulated by glucose availability. We reveal a new mechanism by which excessive activation of CMA may be exploited pharmacologically to eliminate cancer cells by inhibiting both FLT3 and autophagy. Our study delineates a novel pharmacological strategy to promote the degradation of HK2 in cancer cells.  相似文献   

4.
Hexokinase is the first enzyme in the glycolytic pathway catalyzing the reaction in which glucose is phosphorylated into glucose-6-phosphate. Mammals possess 4 isoforms of hexokinase; HK2 (hexokinase 2) is the predominant form in insulin-sensitive tissues such as adipocytes, as well as skeletal and cardiac muscle. In addition to its function in glucose metabolism, HK2 is associated with cardiomyocyte protection against mitochondrial-mediated apoptotic cell death; whether or not HK2 played a role in cardioprotective autophagy was yet to be discovered. However, in a recent study highlighted by a punctum in this issue of Autophagy, Roberts et al. addressed this possibility, uncovering a direct link between HK2, TORC1, and autophagy regulation.  相似文献   

5.
6.
Staying alive     
Quiescence is a state of reversible cell cycle arrest that can grant protection against many environmental insults. In some systems, cellular quiescence is associated with a low metabolic state characterized by a decrease in glucose uptake and glycolysis, reduced translation rates and activation of autophagy as a means to provide nutrients for survival. For cells in multiple different quiescence model systems, including Saccharomyces cerevisiae, mammalian lymphocytes and hematopoietic stem cells, the PI3Kinase/TOR signaling pathway helps to integrate information about nutrient availability with cell growth rates. Quiescence signals often inactivate the TOR kinase, resulting in reduced cell growth and biosynthesis. However, quiescence is not always associated with reduced metabolism; it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. In this review, we compare and contrast the metabolic changes that occur with quiescence in different model systems.  相似文献   

7.
Quiescence is a state of reversible cell cycle arrest that can grant protection against many environmental insults. In some systems, cellular quiescence is associated with a low metabolic state characterized by a decrease in glucose uptake and glycolysis, reduced translation rates and activation of autophagy as a means to provide nutrients for survival. For cells in multiple different quiescence model systems, including Saccharomyces cerevisiae, mammalian lymphocytes and hematopoietic stem cells, the PI3Kinase/TOR signaling pathway helps to integrate information about nutrient availability with cell growth rates. Quiescence signals often inactivate the TOR kinase, resulting in reduced cell growth and biosynthesis. However, quiescence is not always associated with reduced metabolism; it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. In this review, we compare and contrast the metabolic changes that occur with quiescence in different model systems.  相似文献   

8.
Accumulating evidence reveals that metabolic and cell survival pathways are closely related, sharing common signaling molecules. Hexokinase catalyzes the phosphorylation of glucose, the rate-limiting first step of glycolysis. Hexokinase II (HK-II) is a predominant isoform in insulin-sensitive tissues such as heart, skeletal muscle, and adipose tissues. It is also upregulated in many types of tumors associated with enhanced aerobic glycolysis in tumor cells, the Warburg effect. In addition to the fundamental role in glycolysis, HK-II is increasingly recognized as a component of a survival signaling nexus. This review summarizes recent advances in understanding the protective role of HK-II, controlling cellular growth, preventing mitochondrial death pathway and enhancing autophagy, with a particular focus on the interaction between HK-II and Akt/mTOR pathway to integrate metabolic status with the control of cell survival.  相似文献   

9.
IL-4 prevents the death of naive B lymphocytes through the up-regulation of antiapoptotic proteins such as Bcl-x(L). Despite studies implicating glucose utilization in growth factor-dependent survival of hemopoietic cells, the role of glucose energy metabolism in maintaining B cell viability by IL-4 is unknown. We show that IL-4 triggers glucose uptake, Glut1 expression, and glycolysis in splenic B cells; this is accompanied by increased cellular ATP. Glycolysis inhibition results in apoptosis, even in the presence of IL-4. IL-4-induced glycolysis occurs normally in B cells deficient in insulin receptor substrate-2 or the p85alpha subunit of PI3K and is not affected by pretreatment with PI3K or MAPK pathway inhibitors. Stat6-deficient B cells exhibit impaired IL-4-induced glycolysis. Cell-permeable, constitutively active Stat6 is effective in restoring IL-4-induced glycolysis in Stat6-deficient B cells. Therefore, besides controlling antiapoptotic proteins, IL-4 mediates B cell survival by regulating glucose energy metabolism via a Stat6-dependent pathway.  相似文献   

10.
Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.  相似文献   

11.
A unique feature of cancer cells is to convert glucose into lactate to produce cellular energy, even under the presence of oxygen. Called aerobic glycolysis [The Warburg Effect] it has been extensively studied and the concept of aerobic glycolysis in tumor cells is generally accepted. However, it is not clear if aerobic glycolysis in tumor cells is fixed, or can be reversed, especially under therapeutic stress conditions. Here, we report that mTOR, a critical regulator in cell proliferation, can be relocated to mitochondria, and as a result, enhances oxidative phosphorylation and reduces glycolysis. Three tumor cell lines (breast cancer MCF-7, colon cancer HCT116 and glioblastoma U87) showed a quick relocation of mTOR to mitochondria after irradiation with a single dose 5 Gy, which was companied with decreased lactate production, increased mitochondrial ATP generation and oxygen consumption. Inhibition of mTOR by rapamycin blocked radiation-induced mTOR mitochondrial relocation and the shift of glycolysis to mitochondrial respiration, and reduced the clonogenic survival. In irradiated cells, mTOR formed a complex with Hexokinase II [HK II], a key mitochondrial protein in regulation of glycolysis, causing reduced HK II enzymatic activity. These results support a novel mechanism by which tumor cells can quickly adapt to genotoxic conditions via mTOR-mediated reprogramming of bioenergetics from predominantly aerobic glycolysis to mitochondrial oxidative phosphorylation. Such a “waking-up” pathway for mitochondrial bioenergetics demonstrates a flexible feature in the energy metabolism of cancer cells, and may be required for additional cellular energy consumption for damage repair and survival. Thus, the reversible cellular energy metabolisms should be considered in blocking tumor metabolism and may be targeted to sensitize them in anti-cancer therapy.  相似文献   

12.
Macroautophagy (called autophagy hereafter) is a catabolic process activated by various types of stress, most notably by nutrient deprivation. The autophagic degradation of intracellular macromolecules provides metabolic support for the cell; however, this physiological process can also initiate a form of cell death (type 2 programmed cell death). Here we report that oxygen deprivation can activate the autophagic pathway in human cancer cell lines. We observed that hypoxia induced distinct cellular changes characteristic of autophagy such as an increase in cytoplasmic acidic vesicles, and processing and cellular localization of microtubule-associated protein-1 light chain 3. Oxygen deprivation-induced autophagy did not require nutrient deprivation, hypoxia-inducible factor-1 (HIF-1) activity, or expression of the HIF-1 target gene BNIP3 (Bcl-2 adenovirus E1a nineteen kilodalton interacting protein 3) or BNIP3L (BNIP3 like protein). Hypoxia-induced autophagy involved the activity of 5'-AMP-activated protein kinase (AMPK). Finally, we determined that cells lacking the autophagy gene ATG5 were unable to activate the autophagic machinery in hypoxia, had decreased oxygen consumption and increased glucose uptake under hypoxia, had increased survival in hypoxic environments, and exhibited accelerated growth as xenografted tumors. Together, these findings suggest that the autophagic degradation of cellular macromolecules contributes to the energetic balance governed by AMPK, and that suppression of autophagy in transformed cells can increase both resistance to hypoxic stress and tumorigenicity.  相似文献   

13.
Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation.  相似文献   

14.
《Autophagy》2013,9(12):1996-2008
How cellular metabolic activities regulate autophagy and determine the susceptibility to oxidative stress and ultimately cell death in neuronal cells is not well understood. An important example of oxidative stress is 4-hydroxynonenal (HNE), which is a lipid peroxidation product that is formed during oxidative stress, and accumulates in neurodegenerative diseases causing damage. The accumulation of toxic oxidation products such as HNE, is a prevalent feature of neurodegenerative diseases, and can promote organelle and protein damage leading to induction of autophagy. In this study, we used differentiated SH-SY5Y neuroblastoma cells to investigate the mechanisms and regulation of cellular susceptibility to HNE toxicity and the relationship to cellular metabolism. We found that autophagy is immediately stimulated by HNE at a sublethal concentration. Within the same time frame, HNE induces concentration dependent CASP3/caspase 3 activation and cell death. Interestingly, both basal and HNE-activated autophagy, were regulated by glucose metabolism. Inhibition of glucose metabolism by 2-deoxyglucose (2DG), at a concentration that inhibited autophagic flux, further exacerbated CASP3 activation and cell death in response to HNE. Cell death was attenuated by the pan-caspase inhibitor Z-VAD-FMK. Specific inhibition of glycolysis using koningic acid, a GAPDH inhibitor, inhibited autophagic flux and exacerbated HNE-induced cell death similarly to 2DG. The effects of 2DG on autophagy and HNE-induced cell death could not be reversed by addition of mannose, suggesting an ER stress-independent mechanism. 2DG decreased LAMP1 and increased BCL2 levels suggesting that its effects on autophagy may be mediated by more than one mechanism. Furthermore, 2DG decreased cellular ATP, and 2DG and HNE combined treatment decreased mitochondrial membrane potential. We conclude that glucose-dependent autophagy serves as a protective mechanism in response to HNE.  相似文献   

15.
The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.Subject terms: Cell biology, Cancer  相似文献   

16.
17.
Protein targeting to glycogen (PTG) is a ubiquitously expressed scaffolding protein that critically regulates glycogen levels in many tissues, including the liver, muscle and brain. However, its importance in transformed cells has yet to be explored in detail. Since recent studies have demonstrated an important role for glycogen metabolism in cancer cells, we decided to assess the effect of PTG levels on the ability of human hepatocellular carcinoma (HepG2) cells to respond to metabolic stress. Although PTG expression did not significantly affect the proliferation of HepG2 cells under normal culture conditions, we determined that PTG plays an important role during glucose deprivation. Overexpression of PTG protected cells from cell death in the absence of glucose, whereas knocking down PTG further promoted cytotoxicity, as measured by the release of lactate dehydrogenase (LDH) into the media. Additionally, we demonstrated that PTG attenuates glucose deprivation induced haeme oxygenase-1 (HO-1) expression, suggesting that PTG protects against glucose deprivation-induced oxidative stress. Indeed, treating cells with the antioxidant N-acetyl cysteine (NAC) rescued cells from cytotoxicity caused by glucose deprivation. Finally, we showed that loss of PTG resulted in enhanced autophagy. In control cells, glucose deprivation suppressed autophagy as determined by the increase in the levels of p62, an autophagy substrate. However, in knockdown cells, this suppression was relieved. Blockade of autophagy also attenuated cytotoxicity from glucose deprivation in PTG knockdown cells. Taken together, our findings identify a novel role for PTG in protecting hepatocellular carcinoma cells from metabolic stress, in part by regulating oxidative stress and autophagy.  相似文献   

18.
Wang Q  Liang B  Shirwany NA  Zou MH 《PloS one》2011,6(2):e17234
Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H(2)O(2) (100 μM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.  相似文献   

19.
Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.  相似文献   

20.
Glucose metabolism in preimplantation embryos has traditionally been viewed from a somatic cell viewpoint. Here, we show that gene expression in early embryos is similar to rapidly dividing cancer cells. In vitro-produced pig blastocysts were subjected to deep-sequencing, and were found to express two gene variants that have been ascribed importance to cancer cell metabolism (HK2 and the M2 variant of PKM2). Development was monitored and gene expression was quantified in additional embryos cultured in low or high O(2) (5% CO(2), 5% O(2), 90% N(2) vs. 5% CO(2) in air). Development to the blastocyst stage in the two atmospheres was similar, except low O(2) resulted in more total and inner cell mass nuclei than high O(2). Of the 15 candidate genes selected that are involved in glucose metabolism, only TALDO1 and PDK1 were increased in the low O(2) environment. One paradigm that has been used to explain glycolysis under low oxygen tension is the Warburg Effect (WE). The WE predicts that expression of both HK2 and PKM2 M2 results in a slowing of glucose metabolism through the TCA cycle, thereby forcing the products of glycolysis to be metabolized through the pentose phosphate pathway and to lactic acid. This charging of the system is apparently so important to the early embryo that redundant mechanisms are present, that is, a fetal form of PKM2 and high levels of PDK1. Here, we set the framework for using the WE to describe glucose metabolism and energy production during preimplantation development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号