首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 4 毫秒
1.

Background

Neo-vascularization, an indispensible phenomenon for tissue regeneration, facilitates repair and remodeling of wound tissues. This process is impaired in chronic wounds due to reduced number and recruitment of endothelial cells (ECs), thereby necessitating development of newer strategies to enhance the EC repertoire as a therapeutic approach.

Methods

We explored the ‘plasticity’ of Wharton's jelly derived–mesenchymal stromal cells (WJ-MSCs) using an anti-inflammatory drug-mediated enhanced trans-differentiation into ECs, based on our observation of temporal decrease in COX-2 expression during trans-differentiation of MSCs into ECs at day 7 and 14 along with mature ECs.

Results

At a physiological level, an increased DiI-labeled acetylated-low density lipoprotein (DiI-Ac-LDL) uptake, proliferation, migration and chick chorio allantoic membrane (CAM)-vasculogenesis occurred while at a molecular level significant up-regulation in messenger RNA (mRNA) and protein expression of endothelial-specific markers, Vegfr2, Pecam, eNOS, VE-Cadh and Tie-2, along with an activated p-VEGFR2 and its downstream mediators were observed in celecoxib-preconditioned ECs as compared with WJ-MSCs. Green fluorescent protein (GFP)-expressing stable WJ-MSCs and trans-differentiated EC-D14 in the absence/presence of celecoxib were generated using antibiotic selection for intradermal transplantation at the wound site on a murine ‘excisional splinting wound’ model. Engraftment of transplanted human cells in immunosuppressant-treated mice was confirmed by a significant increase in the expression levels of human gene-specific endothelial markers at the regenerated wound sites. Morphometrically, increased vascularity and percent wound closure were observed in regenerated wounds of mice transplanted with celecoxib-preconditioned-EC-D14.

Conclusion

Cox-2 inhibition led to an enhanced trans-differentiation of WJ-MSCs into ECs that, when transplanted, accelerated the skin regeneration by engraftment and neo-vascularization at the wound bed, suggesting a plausible new therapeutic role of celecoxib.  相似文献   

2.
3.

Background aims

Multipotent mesenchymal stromal cell (MSC)-based medicines are extensively investigated for use in regenerative medicine and immunotherapy applications. The International Society for Cell and Gene Therapy (ISCT) proposed a panel of cell surface molecules for MSC identification that includes human leukocyte antigen (HLA)-DR as a negative marker. However, its expression is largely unpredictable despite production under tightly controlled conditions and compliance with current Good Manufacturing Practices. Herein, we report the frequency of HLA-DR expression in 81 batches of clinical grade bone marrow (BM)-derived MSCs and investigated its impact on cell attributes and culture environment.

Methods

The levels of 15 cytokines (interleukin [IL]-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, interferon-γ, soluble CD40 ligand and tumor necrosis factor-α) were determined in sera supplements and supernatants of BM-MSC cultures. Identity, multipotentiality and immunopotency assays were performed on high (>20% of cells) and low (≤20% of cells) HLA-DR+ cultures.

Results

A correlation was found between HLA-DR expression and levels of IL-17F and IL-33. Expression of HLA-DR did neither affect MSC identity, in vitro tri-lineage differentiation potential (into osteogenic, chondrogenic and adipogenic lineages), nor their ability to inhibit the proliferation of stimulated lymphocytes.

Discussion

Out of 81 batches of BM-MSCs for autologous use analyzed, only three batches would have passed the ISCT criteria (<2%), whereas 60.5% of batches were compliant with low HLA-DR values (≤20%). Although a cause–effect relationship cannot be drawn, we have provided a better understanding of signaling events and cellular responses in expansion culture conditions relating with HLA-DR expression.  相似文献   

4.
5.

Background

Chronic kidney disease (CKD) is a progressive loss of kidney function and structure that affects approximately 13% of the population worldwide. A recent meta-analysis revealed that cell-based therapies improve impaired renal function and structure in preclinical models of CKD. We assessed the safety and tolerability of bone marrow–mesenchymal stromal cell (MSC) infusion in patients with CKD.

Methods

A single-arm study was carried out at one center with 18-month follow-up in seven eligible patients with CKD due to different etiologies such as hypertension, nephrotic syndrome (NS) and unknown etiology. We administered an intravenous infusion (1–2?×?106 cells/kg) of autologous cultured MSCs. The primary endpoint was safety, which was measured by number and severity of adverse events. The secondary endpoint was decrease in the rate of decrease in estimated glomerular filtration rate (eGFR). We compared kidney function during the follow-up visits to baseline and 18 months prior to the intervention.

Results

Follow-up visits of all seven patients were completed; however, we have not observed any cell-related adverse events during the trial. Changes in eGFR (P?=?0.10) and serum creatinine (P?=?0.24) from 18 months before cell infusion to baseline in comparison with baseline to 18 months were not statistically significant.

Conclusions

We showed safety and tolerability of a single-dose infusion of autologous MSCs in patients with CKD.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号