首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock genes — integrating cell survival and death   总被引:14,自引:0,他引:14  
  相似文献   

2.
Heat shock proteins (HSPs) are implicated in all phases of cancer from proliferation, impaired apoptosis and sustained angiogenesis to invasion and metastasis. The presence of abnormal HSP levels in several human tumours suggests that these proteins could be used as diagnostic and/or prognostic markers, whilst the direct correlation between HSP expression and drug resistance in neoplastic tissues means they could also be used to predict cancer response to specific treatment. HSPs have also been successfully targeted in clinical trials modifying their expression or chaperone activity. Preliminary studies in veterinary medicine have also demonstrated the presence of altered HSP expression in neoplasms, and the study of carcinogenesis and the role of HSPs in animal models will surely be an additional source of information for clinical cancer research.  相似文献   

3.
4.
《Autophagy》2013,9(12):1827-1829
Breast cancer is one of the most prevalent cancers in women, with more than 240,000 new cases reported in the United States in 2011. Classification of breast cancer based upon hormone and growth factor receptor profiling shows that approximately 70% of all breast cancers express estrogen receptor-α. Thus, drugs that either block estrogen biosynthesis (aromatase inhibitors like Letrozole), or compete with estrogen for estrogen receptor (ER) binding (selective ER modulators including tamoxifen; TAM) and/or cause ER degradation (selective estrogen receptor downregulators such as fulvestrant), are among the most prescribed targeted therapeutics for breast cancer. However, overall clinical benefit from the use of these drugs is often limited by resistance; ER+ breast cancers either fail to respond to endocrine therapies initially (de novo resistance), or they respond and then lose sensitivity over time (acquired resistance). While several preclinical studies postulate how antiestrogen resistance occurs, for the most part, the molecular mechanism(s) of resistance is unknown.  相似文献   

5.
6.
Heat shock proteins in toxicology: How close and how far?   总被引:2,自引:0,他引:2  
The response to stress triggers activation of the genes involved in cell survival and/or cell death. Stress response is a ubiquitous feature of cells that is induced under stress conditions. As a part of this response a set of genes called stress genes are induced to synthesize a group of proteins called heat shock proteins (Hsps). The Hsps play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. Because of their sensitivity to even minor assaults, Hsps are suitable as an early warning bio-indicator of cellular hazard. Despite having enormous use in toxicology, the current state of knowledge in defining a mechanism of action or accurately predicting toxicity based on stress gene expression warrants further investigation. The goal of this review is to summarize current developments in the application of stress genes and their products ‘Hsps’ in toxicology with a brief discussion of the caveats. While focusing on hsp70 because of its higher conservation across the taxa and since it is one of the first to be induced under stress conditions, we will also discuss other members of the stress gene family.  相似文献   

7.
It has been found that actin-specific bacterial protease ECP32 cleaves prokaryotic heat shock protein DnaK, which belongs to the family of heat shock proteins with molecular weight 70 kDa. We propose a new one-step method for DnaK purification using heat treatment. The technique yields ∼1 mg of partially purified DnaK from 25 g of wet bacterial biomass. Polyclonal antibodies against DnaK were obtained. The degree of ECP32 catalyzed proteolysis of partially purified DnaK and that of DnaK in initial cell extracts was compared.  相似文献   

8.
Mizushima N  Hara T 《Autophagy》2006,2(4):302-304
Autophagy is an intracellular bulk degradation process, through which a portion of cytoplasm is delivered to lysosomes to be degraded. In many organisms, the primary role of autophagy is adaptation to starvation. However, we have found that autophagy is also important for intracellular protein quality control. Atg5(-/-) mice die shortly after birth due, at least in part, to nutrient deficiency. These mice also exhibit an intracellular accumulation of protein aggregates in neurons and hepatocytes. We now report the generation of neural cell-specific Atg5-deficient mice. Atg5( flox/flox);Nestin-Cre mice show progressive deficits in motor function and degeneration of some neural cells. In autophagy-deficient cells, diffuse accumulation of abnormal proteins occurs, followed by the generation of aggregates and inclusions. This study emphasizes the point that basal autophagy is important even in individuals who do not express neurodegenerative disease-associated mutant proteins. Furthermore, the primary targets of autophagy are diffuse cytosolic proteins, not protein aggregates themselves.  相似文献   

9.
The kinetics of the cytotoxic T lymphocyte (CTL) response against intracellular pathogens has been found to have many stereotypical features that appear to be programmed early in the infection. We explain these findings here in terms of CTL response kinetics that minimize the probability that a pathological symptom will occur in association with the infection and its eradication. We assume that both the infection and the CTLs contribute to this pathology. We find that contraction kinetics is influenced by the relative pathogenicities of infection and CTLs, as well as on the virulence of the infection and the efficiency of the CTLs, but not by the magnitude of expansion or the dose and duration of infection. Our analysis explains the finding that the duration of the CTL expansion is highly stereotypical, with the maximum expansion of the CTL response dependent on the dose of the infection. Finally, we show that the stereotypical nature of CTL kinetics relies upon stringent regulation of the rates at which CTLs proliferate and die.  相似文献   

10.
DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.  相似文献   

11.
12.
For many years, heat shock or stress proteins have been regarded as intracellular molecules that have a range of housekeeping and cytoprotective functions, only being released into the extracellular environment in pathological situations such as necrotic cell death. However, evidence is now accumulating to indicate that, under certain circumstances, these proteins can be released from cells in the absence of cellular necrosis, and that extracellular heat shock proteins have a range of immunoregulatory activities. The capacity of heat shock proteins to induce pro-inflammatory responses, together with the phylogenetic similarity between prokaryotic and eukaryotic heat shock proteins, has led to the proposition that these proteins provide a link between infection and autoimmune disease. Indeed, both elevated levels of antibodies to heat shock proteins and an enhanced immune reactivity to heat shock proteins have been noted in a variety of pathogenic disease states. However, further evaluation of heat shock protein reactivity in autoimmune disease and after transplantation has shown that, rather than promoting disease, reactivity to self-heat shock proteins can downregulate the disease process. It might be that self-reactivity to heat shock proteins is a physiological response that regulates the development and progression of pro-inflammatory immunity to these ubiquitously expressed molecules. The evolving evidence that heat shock proteins are present in the extracellular environment, that reactivity to heat shock proteins does not necessarily reflect adverse, pro-inflammatory responses and that the promotion of reactivity to self-heat shock proteins can downregulate pathogenic processes all suggest a potential role for heat shock proteins as therapeutic agents, rather than as therapeutic targets.  相似文献   

13.
Heat shock proteins (hsp) are a highly conserved group of proteins that are synthesized as a response to different forms of stress (heat, toxic chemicals, diseases, non-physiological pH changes). Because of their high sensitivity to changes in the environment, these proteins were suggested as possible early biomarkers of exposure in ecotoxicological studies. The purpose of the present study was to check the suitability of hsp 32 and hsp70 as biomarkers of in vitro exposure to environmentally relevant carcinogens: polycyclic aromatic hydrocarbons (PAHs), their nitro-derivates, aromatic amines, acrylonitrile (ACN) and the mixture of organic compounds adsorbed onto ambient airborne particles (extractable organic matter, EOM).The expression of hsp 32 and hsp70 was studied in human diploid lung fibroblasts (HEL cells) and human monocytic leukaemia cells (THP-1 cells) incubated in vitro with different concentrations of dibenzo[a,l]pyrene (DB[a,l]P), 1-nitropyrene, (NP), 4-aminobiphenyl (ABP), ACN and EOM for different periods of time. The incubation of cells with DB[a,l]P, NP, ABP and EOM did not result in increased levels of hsp 32 or hsp70, either in dose- or time-dependent manner. ACN induced the expression of hsp 32 as well as hsp70 in HEL and THP-1 cells, which probably reflects its ability to induce oxidative stress. We conclude that hsp 32 and hsp70 are not suitable biomarkers of an early exposure to PAHs, their nitro-derivates, aromatic amines or EOM under the conditions used.  相似文献   

14.
Heat shock proteins (hsp) are a highly conserved group of proteins that are synthesized as a response to different forms of stress (heat, toxic chemicals, diseases, non-physiological pH changes). Because of their high sensitivity to changes in the environment, these proteins were suggested as possible early biomarkers of exposure in ecotoxicological studies. The purpose of the present study was to check the suitability of hsp32 and hsp70 as biomarkers of in vitro exposure to environmentally relevant carcinogens: polycyclic aromatic hydrocarbons (PAHs), their nitro-derivates, aromatic amines, acrylonitrile (ACN) and the mixture of organic compounds adsorbed onto ambient airborne particles (extractable organic matter, EOM).The expression of hsp32 and hsp70 was studied in human diploid lung fibroblasts (HEL cells) and human monocytic leukaemia cells (THP-1 cells) incubated in vitro with different concentrations of dibenzo[a,l]pyrene (DB[a,l]P), 1-nitropyrene, (NP), 4-aminobiphenyl (ABP), ACN and EOM for different periods of time. The incubation of cells with DB[a,l]P, NP, ABP and EOM did not result in increased levels of hsp32 or hsp70, either in dose- or time-dependent manner. ACN induced the expression of hsp32 as well as hsp70 in HEL and THP-1 cells, which probably reflects its ability to induce oxidative stress. We conclude that hsp32 and hsp70 are not suitable biomarkers of an early exposure to PAHs, their nitro-derivates, aromatic amines or EOM under the conditions used.  相似文献   

15.
The biological outcome of nitric oxide (NO) and reactive nitrogen species (RNS) in regulating pro survival and pro death autophagic pathways still demand further investigation. In the present study, we investigated the effect of nitrosative stress in K562 cells using NO donor compound DETA-NONOate, peroxynitrite, and SIN-1. Exposure to NO, peroxynitrite, and SIN-1 caused decrease in K562 cell survival. NO induced autophagy but not apoptosis or necrosis in K562 cells. In contrast, peroxynitrite and SIN-1 treatment induced apoptosis in K562 cells. Surprisingly, inhibition of autophagic response using 3-methyladenine led to the induction of apoptosis in K562 cells. Increase in 5’adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was only observed in the presence of NO donor indicated that AMPK was crucial to induce autophagy in K562 cells. We for the first time discovered a novel role of p73 in autophagy induction under nitrosative stress in K562 cells. TAp73α was only induced upon exposure to NO but not in the presence of peroxynitrite. Reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio remained unaltered upon NO exposure. Our data suggest a complex network of interaction and cross regulations between NO and p73. These data open a new path for therapies based on the abilities of RNS to induce autophagy-mediated cell death.  相似文献   

16.
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain–containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17–positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4–treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.  相似文献   

17.
To date, little is known either about the physical interactions of heat shock protein 10 (Hsp10) with other proteins within the cell or its involvement in signal transduction pathways. Hsp10 has been considered mainly as a partner of Hsp60 in the Hsp60/10 protein folding machine. Only recently, Hsp10 was reported to interact with proteins involved in deoxyribonucleic acid checkpoint inactivation, termination of M-phase, messenger ribonucleic acid export, import of nuclear proteins, nucleocytoplasmic transport, and pheromone signaling pathways. At the same time, Hsp10 expression can be up-regulated in cancer cells, because it accumulates as the cell transformation progresses. Recent data suggest that Hsp10 may be not only a component of the folding machine but also an active player of the cell signaling network, influencing cell cycle, nucleocytoplasmic transport, and metabolism, with putative roles in the lack of cell differentiation and in the inhibition of apoptosis. In this review, we revise the involvement of Hsp10 in signal transduction pathways and its possible role in cancer etiology.  相似文献   

18.
Do Xenopus oocytes have a heat shock response?   总被引:3,自引:0,他引:3  
  相似文献   

19.
Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer.  相似文献   

20.
Heat shock (HS) proteins (Hsps) function in tissue protection through their chaperone activity and by interacting with cell signaling pathways to suppress apoptosis. Here, we investigated the effect of HS treatment on the nuclear factor (NF)-kappaB signaling pathway in the angiotensin II (ANG II) model of inflammation. Male Sprague-Dawley rats were divided into sham and HS-, ANG II-, and HS + ANG II-treated groups. HS treatment was administered 24 h before the initiation of ANG II infusion. HS treatment (42 degrees C for 15 min) decreased 7-day ANG II-induced hypertension from 191 +/- 4 to 147 +/- 3 mmHg (P < 0.01). Histological staining of hearts showed that HS treatment reduced ANG II-induced leukocyte infiltration, perivascular and interstitial inflammation, and fibrosis. Heart NF-kappaB nuclear translocation and activity, examined by Western blot analysis and electrophoretic mobility shift assay, was suppressed by HS treatment. HS treatment depleted IkappaB kinase-alpha (IKK-alpha) and phosphorylated IKK-alpha and suppressed the depletion of IkappaB-alpha and the accumulation of phosphorylated IkappaB-alpha. HS treatment blocked ANG II induced expression of IL-6 and ICAM-1 in the heart. ANG II and HS treatment induced high-level expression of Hsp27 and Hsp70 and their phosphorylation. Phosphorylated isoforms of Hsp27 and Hsp70 may play an important role in protecting the heart against ANG II-induced inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号