首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Idiopathic nephrotic syndrome (INS) is one of the most common renal diseases in the pediatric population; considering the role of the immune system in its pathogenesis, corticosteroids are used as first-line immunosuppressive treatment. Due to its chronic nature and tendency to relapse, a significant proportion of children experience co-morbidity due to prolonged exposure to corticosteroids and concomitant immunosuppression with second-line, steroid-sparing agents. Mesenchymal stromal cells (MSCs) are multipotent cells that represent a key component of the bone marrow (BM) microenvironment; given their unique immunoregulatory properties, their clinical use may be exploited as an alternative therapeutic approach in INS treatment.

Methods

In view of the possibility of exploiting their immunoregulatory properties, we performed a phenotypical and functional characterization of MSCs isolated from BM of five INS patients (INS-MSCs; median age, 13 years; range, 11–16 years) in comparison with MSCs isolated from eight healthy donors (HD-MSCs). MSCs were expanded ex vivo and then analyzed for their properties.

Results

Morphology, proliferative capacity, immunophenotype and differentiation potential did not differ between INS-MSCs and HD-MSCs. In an allogeneic setting, INS-MSCs were able to prevent both T- and B-cell proliferation and plasma-cell differentiation. In an in-vitro model of experimental damage to podocytes, co-culture with INS-MSCs appeared to be protective.

Discussion

Our results demonstrate that INS-MSCs maintain the main biological and functional properties typical of HD-MSCs; these data suggest that MSCs may be used in autologous cellular therapy approaches for INS treatment.  相似文献   

2.
《Cytotherapy》2014,16(5):579-585
The purpose of this review is to systematize data from many studies and observations of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cell (MSC) paracrine factors and their biologic effects in models of acute organ injury.  相似文献   

3.
《Cytotherapy》2014,16(10):1371-1383
Background aimsThe purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo.MethodsCultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media.ResultsIsolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects.ConclusionsL-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.  相似文献   

4.
Immunomodulatory human mesenchymal stromal cells (hMSC) have been incorporated into therapeutic protocols to treat secondary inflammatory responses post-spinal cord injury (SCI) in animal models. However, limitations with direct hMSC implantation approaches may prevent effective translation for therapeutic development of hMSC infusion into post-SCI treatment protocols. To circumvent these limitations, we investigated the efficacy of alginate microencapsulation in developing an implantable vehicle for hMSC delivery. Viability and secretory function were maintained within the encapsulated hMSC population, and hMSC secreted anti-inflammatory cytokines upon induction with the pro-inflammatory factors, TNF-α and IFN-γ. Furthermore, encapsulated hMSC modulated inflammatory macrophage function both in vitro and in vivo, even in the absence of direct hMSC-macrophage cell contact and promoted the alternative M2 macrophage phenotype. In vitro, this was evident by a reduction in macrophage iNOS expression with a concomitant increase in CD206, a marker for M2 macrophages. Finally, Sprague-Dawley rat spinal cords were injured at vertebra T10 via a weight drop model (NYU model) and encapsulated hMSC were administered via lumbar puncture 24 h post-injury. Encapsulated hMSC localized primarily in the cauda equina of the spinal cord. Histological assessment of spinal cord tissue 7 days post-SCI indicated that as few as 5 × 10(4) encapsulated hMSC yielded increased numbers of CD206-expressing macrophages, consistent with our in vitro studies. The combined findings support the inclusion of immobilized hMSC in post-CNS trauma tissue protective therapy, and suggest that conversion of macrophages to the M2 subset is responsible, at least in part, for tissue protection.  相似文献   

5.
6.

Background

Many studies have reported that inflammation and oxidative stress are involved in the pathogenesis of polycystic ovary syndrome (PCOS). Bone marrow mesenchymal stromal cells (BM-MSCs) have anti-oxidant and anti-inflammation properties. In this study, we investigate the beneficial effect of stem cell therapy on folliculogenesis in mice with induced PCOS

Methods

Mouse model of PCOS was performed through daily injection of testosterone enanthate (1 mg/100 g/body weight subcutaneous (s.c).) for a period of 5 weeks. Naval Medical Research Institute (NMRI) mice (21 days old) were divided into three groups: control, PCOS and PCOS?+?BM-MSCs. BM-MSCs were labeled with Hoechst 33342 (0.5 µg/mL) and then injected into the mice (106/animal, via the tail vein) at 1 and 14 days after PCOS confirmation. Mice were humanely killed at 2 weeks after last transplantation. Ovarian stereological studies were done. Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), testosterone, interleukin (IL)-6 and tumor necrosis factor (TNF)-α serum levels were measured. The levels of malondialdehyde (MDA) and total antioxidant capacity (TAC) in serum were analyzed. Apoptotic index for ovarian follicles was assessed using Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). CD31 expression in ovarian vessels was assessed with the immunohistochemistry.

Results

There was a significant increase in the total volume of ovary, cortex, number of antral follicles, volume of oocyte and zona pellucida thickness, and there was a significant decrease in the primary and preantral follicles number in the PCOS?+?BM-MSCs group compared with the PCOS group. There was a significant increase in the serum level of FSH and TAC and a significant decrease in the serum level of testosterone, LH, MDA and percentage of TUNEL-positive apoptotic cells in the PCOS?+?BM-MSCs group in comparison with the PCOS group.

Discussion

BM-MSC transplantation improves folliculogenesis in mice with induced PCOS. BM-MSC therapy can be an operative treatment for PCOS via anti-inflammatory, anti-oxidant and anti-apoptotic properties.  相似文献   

7.
Background aimsStem cells provide a promising source for treatment of type 1 diabetes, but the treatment strategy and mechanism remain unclear. The aims of this study were to investigate whether co-transplantation of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) and cord blood mononuclear cells (CB-MNCs) could reverse hyperglycemia in type 1 diabetic mice and to determine the appropriate ratio for co-transplantation. The treatment mechanism was also studied.MethodsA simple and efficient isolation method was developed to generate qualified UC-MSCs. UC-MSCs and CB-MNCs were then transplanted into type 1 diabetic mice at different ratios (UC-MSCs to CB-MNCs = 1:1, 1:4, 1:10) to observe the change in blood glucose concentration. Histology, immunohistochemistry, and human Alu polymerase chain reaction assay were performed to evaluate for the presence of donor-derived cells and the repair of endogenous islets. We also induced UC-MSCs into islet-like cells under specific culture conditions to determine their differentiate potential in vitro.ResultsCo-transplantation of UC-MSCs and CB-MNCs at a ratio of 1:4 effectively reversed hyperglycemia in diabetic mice. The detection of human Alu sequence indicated that the engraftment of donor-derived cells had homed into the recipient's pancreas and kidney. Although neither human insulin nor human nuclei antigen was detected in the regenerated pancreas, UC-MSCs could differentiate into insulin-secreted cells in vitro.ConclusionsCo-transplantation of UC-MSCs and CB-MNCs at a ratio of 1:4 could efficiently reverse hyperglycemia and repair pancreatic tissue.  相似文献   

8.
Abstract Identification of mesenchymal stem cells (MSCs) derived from alternative sources has provided an exciting prospect for intensive investigation. This work focused on characterizing a new source of MSCs from stromal cells from human eye conjunctiva. In this study, after conjunctiva biopsies and culture of stromal segment of this tissue, fibroblast-like (SH2+, SH3+, CD29+, CD44+, CD166+, CD13+) human stromal cells, which can be differentiated toward the osteogenic, adipogenic, chondrogenic, and neurogenic lineages, were obtained. These cells expressed Oct-4, Nanog, Rex-1 genes, and some lineage-specific markers like cardiac actin and Keratin. Taken together, the results indicate that conjunctiva stromal-derived cells are a new source of multipotent MSCs and despite originating from an adult source, they express undifferentiated stem cell markers.  相似文献   

9.
《Cytotherapy》2014,16(12):1692-1699
Background aimsMesenchymal stromal cells hold special interest for cell-based therapy because of their tissue-regenerative and immunosuppressive abilities. B-cell involvement in chronic inflammatory and autoimmune pathologies makes them a desirable target for cell-based therapy. Mesenchymal stromal cells are able to regulate B-cell function; although the mechanisms are little known, they imply cell-to-cell contact.MethodsWe studied the ability of human adipose tissue–derived mesenchymal stromal cells (ASCs) to attract B cells.ResultsWe show that ASCs promote B-cell migration through the secretion of chemotactic factors. Inflammatory/innate signals do not modify ASC capacity to mediate B-cell motility and chemotaxis. Analysis of a panel of B cell–related chemokines showed that none of them appeared to be responsible for B-cell motility. Other ASC-secreted factors able to promote cell motility and chemotaxis, such as the cytokine interleukin-8 and prostaglandin E2, did not appear to be implicated.ConclusionsWe propose that ASC promotion of B-cell migration by undefined secreted factors is crucial for ASC regulation of B-cell responses.  相似文献   

10.
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune‐modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue‐specific subsets, and lack of clear‐cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in‐depth evaluation of cellular characteristics of MSCs from proximal oro‐facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche‐specific influences on multipotency and immune‐modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno‐stimulatory/immune‐adhesive ligands like HLA‐DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro‐inflammatory cytokines. Both DPSCs and PDLSCs were hypo‐immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen‐induced lympho‐proliferative responses and priming with either IFNγ or TNFα enhanced immuno‐modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro‐inflammatory cytokines before translational usage.  相似文献   

11.

Background

Pneumonia is the fourth leading cause of death worldwide, and Streptococcus pneumoniae is the most commonly associated pathogen. Increasing evidence suggests that mesenchymal stromal cells (MSCs) have anti-inflammatory roles during innate immune responses such as sepsis. However, little is known about the effect of MSCs on pneumococcal pneumonia.

Methods

Bone marrow–derived macrophages (BMDMs) were stimulated with various ligands in the presence or absence of MSC-conditioned medium. For in vivo studies, mice intranasally-inoculated with S. pneumoniae were intravenously treated with MSCs or vehicle, and various parameters were assessed.

Results

After stimulation with toll-like receptor (TLR) 2, TLR9 or TLR4 ligands, or live S. pneumoniae, TNF-α and interleukin (IL)–6 levels were significantly decreased, whereas IL-10 was significantly increased in BMDMs cultured in MSC-conditioned medium. In mice, MSC treatment decreased the number of neutrophils in bronchoalveolar lavage fluid (BALF) after pneumococcal infection, and this was associated with a decrease in myeloperoxidase activity in the lungs. Levels of proinflammatory cytokines, including TNF-α, IL-6, GM-CSF and IFN-γ, were significantly lower in MSC-treated mice, and the bacterial load in the lung after pneumococcal infection was significantly reduced. In addition, histopathologic analysis confirmed a decrease in the number of cells recruited to the lungs; however, lung edema, protein leakage into the BALF and levels of the antibacterial protein lipocalin 2 in the BALF were comparable between the groups.

Conclusions

These results indicate that MSCs could represent a potential therapeutic application for the treatment of pneumonia caused by S. pneumoniae.  相似文献   

12.
Mesenchymal stromal cells (MSCs) and regulatory T cells (Tregs) have both garnered abundant interests from immunologists worldwide, as both MSCs and Tregs can be considered immunosuppressive in their own right. But a little attention has been paid to the impacts of MSCs on Tregs. To clarify the effects of MSCs on Tregs, we performed the coculture systems within MSCs and Tregs. We confirmed that MSC-exposed Tregs are capable of more immunosuppressive than Tregs without coculturing with MSCs. And this augmenting suppressive capacity was accompanied with an upregulation of programmed cell death 1 receptor (PD-1) on Tregs. Importantly, we found that cell viability of Tregs was excluded from the influences of MSCs. Finally, we showed that PD-1/B7-H1 interactions and IL-10 might be responsible for the enhanced suppressive capability of MSC-exposed Tregs. Further analysis revealed that PD-1/B7-H1 interactions were not responsible for the productions of IL-10 and TGF-β1 in the MSC-Treg coculture systems; in contrast, IL-10 rather than TGF-β1 played a role in the upregualtion of PD-1. Furthermore, this is the first explorative study to evaluate the immunomodulation of MSCs on the suppressive capacity of Tregs in MSC–Treg in vitro coculture setting.  相似文献   

13.
《Cytotherapy》2014,16(1):56-63
Background aimsStaphylococci account for a large proportion of hospital-acquired infections, especially among patients with indwelling devices. These infections are often caused by biofilm-producing strains, which are difficult to eradicate and may eventually cause bacteremia and metastatic infections. Recent evidence suggests that mesenchymal stem cells can enhance bacterial clearance in vivo.MethodsIn this study, a rat model with carboxymethyl cellulose pouch infection was used to analyze the efficacy of bone marrow–derived mesenchymal stromal cells (BMSCs) against the methicillin-resistant Staphylococcus aureus.ResultsThe results showed that the administration of BMSCs effectively reduced the number of bacterial colonies and the expression of many cytokines and chemokines (such as interleukin [IL]-6, IL-1β, IL-10 and CCL5). Unlike the fibroblast control groups, the pouch tissues from the BMSC-treated rats showed the formation of granulations, suggesting that the healing of the wound was in progress.ConclusionsThe results indicate that the treatment of BMSCs can reduce methicillin-resistant S aureus infection in vivo, thereby reducing the inflammatory response.  相似文献   

14.

Background aims

Bone marrow–derived mesenchymal stromal cells (MSCs) have been reported to suppress T-cell proliferation and used to alleviate the symptoms of graft-versus-host disease (GVHD). MSCs are a mixed cell population and at this time there are no tools to isolate the cells responsible for the T-cell suppression. We wanted to find a way to enhance the immune-modulatory actions of MSCs and tried varying the temperature at which they were cultured.

Methods

We cultured human MSCs derived from healthy volunteers at different temperatures and tested their ability to switch macrophage character from pro-inflammatory to anti-inflammatory (M1 type to M2 type). Using an enzyme-linked immunosorbent assay (ELISA), we showed that when MSCs are cultured at higher temperatures their ability to induce co-cultured macrophages to produce more interleukin-10, (IL-10) (an anti-inflammatory cytokine) and less tumor necrosis factor alpha, (TNFα) (a pro-inflammatory cytokine) is increased. We performed Western blots and immunocytochemistry to screen for changes that might underlie this effect.

Results

We found that in hyperthermia the heat shock protein, HSF1, translocated into the nucleus of MSCs. It appears to induce the COX2/PGE2 (Cyclooxygenase2/Prostaglandin E2) pathway described earlier as a major mechanism of MSC-directed immune-suppression.

Conclusion

Hyperthermia increases the efficacy of MSC-driven immune-suppression. We propose that changing the time of MSC administration to patients to mid-to-late afternoon when the body temperature is naturally highest might be beneficial. Warming the patient could also be considered.  相似文献   

15.
Human mesenchymal stromal cells (MSCs) expanded in vitro for cell therapy approaches need to be carefully investigated for genetic stability, by employing both molecular and conventional karyotyping. Reliability of cytogenetic analysis may be hampered in some MSC samples by the difficulty of obtaining an adequate number of metaphases. In an attempt to overcome this problem, a methodology apt to evaluate the cell‐cycle structure on synchronous MSCs was optimised. Results obtained in five independent experiments by comparing cell‐cycle analysis of synchronous and asynchronous MSC populations evaluated at early and late culture passages documented that in synchronous MSCs, 30% of cells entered G2/M phase after about 27–28 h of culture, while in asynchronous MSCs only 8% of cells in G2/M phase could be observed at the same time point. Cytogenetic analysis on synchronous MSCs allowed us to obtain 20–25 valuable metaphases/slide, whereas only 0–4 metaphases/slide were detectable in asynchronous preparations. J. Cell. Biochem. 112: 1817–1821, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
《Cytotherapy》2014,16(8):1080-1091
Background aimsCeliac disease is caused by a dysregulated immune response toward dietary gluten, whose only treatment is a lifelong gluten-free diet. We investigated the effects of mesenchymal stromal cells (MSCs) on gliadin-specific T cells, which are known to induce intestinal lesions, in view of a possible use as new therapy.MethodsBone marrow–derived MSCs and gliadin-specific T-cell lines were obtained from allogeneic donors and mucosal specimens of celiac patients, respectively. The immunosuppressant effect of MSCs was evaluated in terms of proliferative response and interferon (IFN)-γ production upon gliadin stimulation of long-term T-cell lines; the immunomodulant effect was assessed in terms of apoptotic rate, immunophenotype and cytokine profile of short-term T-cell lines generated in the presence of MSCs. Different MSC:T-cell ratios were applied, and statistics were performed as appropriate.ResultsMSCs inhibited both proliferative response and IFN-γ production of long-term T-cell lines in a dose-dependent manner while limiting the expansion of short-term T-cell lines by increasing the apoptotic rate. Moreover, a reduction of the CD4+ population and expansion of the regulatory FoxP3+ subset were found in T-cell lines cultured with MSCs, in which a significant decrease of interleukin (IL)-21, IFN-γ and IL-10 paralleled by an upregulation of transforming growth factor-β1, IL-6 and IL-8 were observed. Finally, an increase of the indoleamine 2,3-dioxygenase activity was found, possibly playing a key role in mediating these effects.ConclusionsMSCs exert potent immunomodulant effects on gliadin-specific T cells, which may be exploited for future therapeutic application in celiac disease.  相似文献   

17.
18.
《Cryobiology》2016,72(3):384-390
Cryopreservation is a technique that has been extensively used for storage of multipotent mesenchymal stromal cells (MSCs) in regenerative medicine. Therefore, improving current cryopreservation procedures in terms of increasing cell viability and functionality is important. In this study, we optimized the cryopreservation protocol of MSCs derived from the common marmoset Callithrix jacchus (cj), which can be used as a non-human primate model in various pathological and transplantation studies and have a great potential for regenerative medicine. We have investigated the effect of the active control of the nucleation temperature using induced nucleation at a broad range of temperatures and two different dimethylsulfoxide concentrations (Me2SO, 5% (v/v) and 10%, (v/v)) to evaluate the overall effect on the viability, metabolic activity and recovery of cells after thawing. Survival rate and metabolic activity displayed an optimum when ice formation was induced at −10 °C. Cryomicroscopy studies indicated differences in ice crystal morphologies as well as differences in intracellular ice formation with different nucleation temperatures. High subzero nucleation temperatures resulted in larger extracellular ice crystals and cellular dehydration, whereas low subzero nucleation temperatures resulted in smaller ice crystals and intracellular ice formation.  相似文献   

19.
In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative and advantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine.  相似文献   

20.
《Cytotherapy》2014,16(7):893-905
Background aimsCord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated.MethodsMSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ResultsWe were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ConclusionsOur results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号