首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(10):1467-1474
Atg17, in complex with Atg29 and Atg31, constitutes a key module of the Atg1 kinase signaling complex and functions as an important organizer of the phagophore assembly site in the yeast Saccharomyces cerevisiae. We have determined the three-dimensional reconstruction of the full S. cerevisiae Atg17-Atg31-Atg29 complex by single-particle electron microscopy. Our structure shows that Atg17-Atg31-Atg29 is dimeric and adopts a relatively rigid and extended “S-shape” architecture with an end-to-end distance of approximately 345 Å. Subunit mapping analysis indicated that Atg17 mediates dimerization and generates a central rod-like scaffold, while Atg31 and Atg29 form two globular domains that are tethered to the concave sides of the scaffold at the terminal regions. Finally, our observation that Atg17 adopts multiple conformations in the absence of Atg31 and Atg29 suggests that the two smaller components play key roles in defining and maintaining the distinct curvature of the ternary complex.  相似文献   

2.
R Taylor  PH Chen  CC Chou  J Patel  SV Jin 《Autophagy》2012,8(9):1300-1311
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP 7 and IP 8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP 4 and IP 5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.  相似文献   

3.
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.  相似文献   

4.
Although the human ULK complex mediates phagophore initiation similar to the budding yeast Saccharomyces cerevisiae Atg1 complex, this complex contains ATG101 but not Atg29 and Atg31. Here, we analyzed the fission yeast Schizosaccharomyces pombe Atg1 complex, which has a subunit composition that resembles the human ULK complex. Our pairwise coprecipitation experiments showed that while the interactions between Atg1, Atg13, and Atg17 are conserved, Atg101 does not bind Atg17. Instead, Atg101 interacts with the HORMA domain of Atg13 and this enhances the stability of both proteins. We also found that S. pombe Atg17, the putative scaffold subunit, adopts a rod-shaped structure with no discernible curvature. Interestingly, S. pombe Atg17 binds S. cerevisiae Atg13, Atg29, and Atg31 in vitro, but it cannot complement the function of S. cerevisiae Atg17 in vivo. Furthermore, S. pombe Atg101 cannot substitute for the function of S. cerevisiae Atg29 and Atg31 in vivo. Collectively, our work generates new insights into the subunit organization and structural properties of an Atg101-containing Atg1/ULK complex.  相似文献   

5.
6.
Understanding of the molecular system for DNA delivery into eucaryotic cells, a key to human DNA therapy, remains obscure. To understand this system, we undertook a study using the Saccharomyces cerevisiae model into which DNA delivery is easily assessed through competence (transformability) and for which all nonessential gene mutants (about 5000 strains) are available. We analyzed the competence of each of these mutants and identified three low-competence mutants, i.e., sin3Delta, she4Delta, and arc18Delta, and three high-competence mutants, i.e., pde2Delta, spf1Delta, and pmr1Delta. Through further studies using the six mutants, we concluded that the Arp2/3 activation machinery involving the Myo3/5p, Vrp1p, Las17p, Pan1p, and Arp2/3 complex is crucial to delivery (competence), and that high cAMP enhances competence via protein kinase A installing Tpk3p. We also propose that DNA is taken up via an endocytosis-like event, being at least partially different from well-known endocytosis.  相似文献   

7.
During mitosis in budding yeast the nucleus first moves to the mother-bud neck and then into the neck. Both movements depend on interactions of cytoplasmic microtubules with the cortex. We investigated the mechanism of these movements in living cells using video analysis of GFP-labeled microtubules in wild-type cells and in EB1 and Arp1 mutants, which are defective in the first and second steps, respectively. We found that nuclear movement to the neck is largely mediated by the capture of microtubule ends at one cortical region at the incipient bud site or bud tip, followed by microtubule depolymerization. Efficient microtubule interactions with the capture site require that microtubules be sufficiently long and dynamic to probe the cortex. In contrast, spindle movement into the neck is mediated by microtubule sliding along the bud cortex, which requires dynein and dynactin. Free microtubules can also slide along the cortex of both bud and mother. Capture/shrinkage of microtubule ends also contributes to nuclear movement into the neck and can serve as a backup mechanism to move the nucleus into the neck when microtubule sliding is impaired. Conversely, microtubule sliding can move the nucleus into the neck even when capture/shrinkage is impaired.  相似文献   

8.
Using cDNA microarray analysis, we found that the mRNA of YJL217W and several other genes related to cell wall organization and biogenesis were up-regulated by galactose in Saccharomyces cerevisiae early during the induction process. YJL217W is also known as REE1 (Regulation of Enolase I). Both the Gal4 regulatory region and the Mac1 binding domain were found on the upstream region of REE1, and the expression of REE1 was up-regulated by galactose but not by glucose. The up-regulation of REE1 by galactose was not observed in the Δgal4 strain. From the two-hybrid analysis, we found that Ree1 physically interacted with Gal83. Furthermore, from 2-D gel electrophoresis we found that the deletion of REE1 resulted in the up-regulation of Eno1. From Western blotting, we learned that the expression of Eno1 in the Δree1 strain was different from that in wild-type strains and that Eno1 expression was not changed by glucose stimulation. Taken together, these results suggest that Ree1p functions in the galactose metabolic pathway via the Gal83 protein and that it may control the level of Eno1p, which is also affected by the Snf1 complex, in S. cerevisiae.  相似文献   

9.
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

10.
11.
Interleukin 27 (IL‐27) is a heterodimeric cytokine that elicits potent immunosuppressive responses. Comprised of EBI3 and p28 subunits, IL‐27 binds GP130 and IL‐27Rα receptor chains to activate the JAK/STAT signaling cascade. However, how these receptors recognize IL‐27 and form a complex capable of phosphorylating JAK proteins remains unclear. Here, we used cryo electron microscopy (cryoEM) and AlphaFold modeling to solve the structure of the IL‐27 receptor recognition complex. Our data show how IL‐27 serves as a bridge connecting IL‐27Rα (domains 1–2) with GP130 (domains 1–3) to initiate signaling. While both receptors contact the p28 component of the heterodimeric cytokine, EBI3 stabilizes the complex by binding a positively charged surface of IL‐27Rα and Domain 1 of GP130. We find that assembly of the IL‐27 receptor recognition complex is distinct from both IL‐12 and IL‐6 cytokine families and provides a mechanistic blueprint for tuning IL‐27 pleiotropic actions.  相似文献   

12.
13.
We report the discovery and characterisation of a novel nucleolar protein of Saccharomyces cerevisiae. We identified this protein encoded by ORF YIL019w, designated in SGD base as Faf1p, in a two hybrid interaction screen using the known nucleolar protein Krr1 as bait. The presented data indicate that depletion of the Faf1 protein has an impact on the 40S ribosomal subunit biogenesis resulting from a decrease in the production of 18S rRNA. The primary defect is apparently due to inefficient processing of 35S rRNA at the A(0), A(1), and A(2) cleavage sites.  相似文献   

14.
To study the effect of the ret1-1 mutation on the secretome, the glycosylation patterns and locations of the secretory proteins and glycosyltransferases responsible for glycosylation were investigated. Analyses of secretory proteins and cell wall-associated glycoproteins showed severe impairment of glycosylation in this mutant. Results from 2D-polyacrylamide gel electrophoresis (PAGE) indicated defects in the glycosylation and cellular localization of SDS-soluble cell wall proteins. Localization of RFP-tagged glycosyltransferase proteins in ret1-1 indicated an impairment of Golgi-to retrograde transport at a non-permissive temperature. Thus, impaired glycosylation caused by the mislocalization of ER resident proteins appears to be responsible for the alterations in the secretome and the increased sensitivity to ER stress in ret1-1 mutant cells.  相似文献   

15.
Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.  相似文献   

16.
The essential Nps1p/Sth1p is a catalytic subunit of the nucleosome-remodeling complex, RSC, of Saccharomyces cerevisiae that can alter nucleosome structure by using the energy of ATP hydrolysis. Besides the ATPase domain, Nps1p harbors the bromodomain, of which the function(s) have not yet been defined. We have isolated a temperature-sensitive mutant allele of NPS1, nps1-13, which has amino acid substitutions within the bromodomain. This mutation perturbed the interaction between the RSC components and enhanced the sensitivity of the cells to several DNA-damaging treatments at the permissive temperature. Reduced expression of NPS1 also caused DNA damage sensitivity. These results suggest the importance of the Nps1p bromodomain in RSC integrity and a model in which high amounts of RSC would be required for the cells to overcome DNA damage.  相似文献   

17.
Mutations in SURF1, the human homologue of yeast SHY1, are responsible for Leigh's syndrome, a neuropathy associated with cytochrome oxidase (COX) deficiency. Previous studies of the yeast model of this disease showed that mutant forms of Mss51p, a translational activator of COX1 mRNA, partially rescue the COX deficiency of shy1 mutants by restoring normal synthesis of the mitochondrially encoded Cox1p subunit of COX. Here we present evidence showing that Cox1p synthesis is reduced in most COX mutants but is restored to that of wild type by the same mss51 mutation that suppresses shy1 mutants. An important exception is a null mutation in COX14, which by itself or in combination with other COX mutations does not affect Cox1p synthesis. Cox14p and Mss51p are shown to interact with newly synthesized Cox1p and with each other. We propose that the interaction of Mss51p and Cox14p with Cox1p to form a transient Cox14p-Cox1p-Mss51p complex functions to downregulate Cox1p synthesis. The release of Mss51p from the complex occurs at a downstream step in the assembly pathway, probably catalyzed by Shy1p.  相似文献   

18.
19.
We analyzed the metaproteome of the bacterial community resident in the hindgut paunch of the wood-feeding ‘higher'' termite (Nasutitermes) and identified 886 proteins, 197 of which have known enzymatic function. Using these enzymes, we reconstructed complete metabolic pathways revealing carbohydrate transport and metabolism, nitrogen fixation and assimilation, energy production, amino-acid synthesis and significant pyruvate ferredoxin/flavodoxin oxidoreductase protein redundancy. Our results suggest that the activity associated with these enzymes may have more of a role in the symbiotic relationship between the hindgut microbial community and its termite host than activities related to cellulose degradation.  相似文献   

20.
The iron-sulfur protein of the cytochromebc 1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochromec 1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochromeb-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochromebc 1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochromec 1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to theb-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号