首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mandibles of decapod zoea-I larvae are robustly built masticating mouthparts equipped with several processes and spines. Superficial examination of these sturdy, inflexible structures can suggest that they are lacking sensory receptors. However, detailed TEM analysis of their ultrastructure revealed up to 11 sensillar cell clusters on the gnathal edges of the mandibles of the zoea-I in Palaemon elegans Rathke, 1837. Based on ultrastructural criteria we distinguish 7 types of sensilla: mechanoreceptors, chemoreceptors and mechano- and chemoreceptors. One sensory unit located at the base of the ‘lacinia mobilis’ exhibits the typical features of a crustacean mechanosensitive sensillum with an external seta and corresponding ultrastructure. Another unit shows features indicating bimodal contact chemosensitivity. A third one is similar to known olfactory chemoreceptors.Using the concept of modality-specific structures we analyse the structure and functional morphology of each sensillum, and give a comprehensive overview of the sensory abilities of zoea mandibles. We take a closer look at the ultrastructure of the ‘lacinia mobilis’, providing further features to trace its evolutionary history in Decapoda, and thus contributing to a better understanding of malacostracan phylogeny.  相似文献   

2.
The investigation of the antennae of Scutigera coleoptrata (Linnaeus, 1758) by scanning electron microscopy (SEM) revealed the presence of five types of sensilla: sensilla trichodea, beak‐like sensilla, cone‐shaped sensilla brachyconica on the terminal article, sensory cones at the antennal nodes, and the shaft organ. Alongside the presence and absence of antennal sensillar types, three unique characters were found in the Scutigeromorpha: the presence of long antennae with nodes bearing sensory cones, the presence of a bipartite shaft including the shaft organ, and the presence of beak‐like sensilla. Neuroanatomical data showed that the animals' brains are equipped with well‐developed primary olfactory and mechanosensory centers, suggesting that the antennae must be equipped with specialized sensilla to perceive chemosensory and mechanosensory cues. With the evidence provided in this article for the Scutigeromorpha, SEM data are available at last on the antennal sensilla for all five chilopod taxa, allowing a comparative discussion of antennal morphology in Chilopoda. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

3.
The fine structure and distribution of various types of antennal sensilla in three nymphal stages and in adults of both solitary-reared (solitary) and crowd-reared (gregarious) phases of the desert locust, Schistocerca gregaria, were investigated by scanning and transmission electron microscopy. Four types of sensilla were identified: sensilla basiconica, s. trichodea, s. coeloconica and s. chaetica. S. basiconica contain up to 50 sensory neurons, each of which displays massive dendritic branching. The sensillar wall is penetrated by a large number of pores. In contrast, s. trichodea contain one to three sensory neurons that branch to give five or six dendrites in the sensillar lumen; the sensillum wall is penetrated by relatively few pores. The s. coeloconica are situated in spherical cuticular pits on the antennal surface. The s. coeloconica are of two types: one type contains one to three sensory neurons with double sensillar walls penetrated by slit-like pores, whereas the second type contains four sensory neurons with non-porous double sensillar walls. The s. chaetica have a flexible socket and a thick non-porous sensillum wall and contain four sensory neurons that send unbranched dendrites to a terminal pore. A fifth sensory neuron of the s. chaetica terminates in a tubular body at the base of the hair. S. basiconica and coeloconica are normally distributed over the entire antennal flagellum, with a concentration in the middle segments; s. trichodea have three areas of concentration on the 5th, 10th and 14th flagellar segments. Sensilla chaetica are most abundant on the terminal segment. Locusts raised in solitary conditions have more olfactory sensilla (s. basiconica and s. coeloconica) than crowd-reared locusts. The difference in sensillar numbers is more evident in adults than in nymphs. These results suggest that differences in the odour-mediated behaviour of nymphs and adults, and between the phases of S. gregaria, may be attributable to differences at the sensory input level.  相似文献   

4.
The external ultrastructure of sensilla on the maxillary galea are investigated in Mamestra configurata and five other lepidopterous larvae using scanning electron microscopy. The galea and lacinia, comprising the mesal lobe of the maxilla, are either completely separate, fused, or incompletely fused in these species. The distal surface of the mesal lobe of all species examined bears two styloconic sensilla, three basiconic sensilla, and three trichoid sensilla, whereas the midventral wall of this lobe bears a campaniform sensillum. The latter sensillum is visible in only three of the six species examined. The styloconic and basiconic sensilla occupy a ventro anterior location, whereas the trichoid sensilla are positioned dorsoposteriorly. Interspecific comparisons of galeal size, as well as sensillar size, shape, and position are made for all species. The styloconic sensilla are the only sensillar type permeable to an aqueous solution of cobalt chloride when viewed by brightfield light microscopy in all species examined. Cobalt ions permeate through the terminal pore of each styloconic peg and percolate through the fenestrated fibrillar pore matrix, located directly below the pore. These ions permeate along the dendritic channel and accumulate in the adjacent sensillar sinus surrounding the peg and/or style by way of a presumably permeable dendritic sheath in all species, but to varying extents. The cuticular sidewall pores surrounding the terminal pore also appear to be permeable to cobalt ions in all the species examined. In most species examined, the styloconic sensilla are only minimally permeable to mercury ions. In these species, mercury ions permeate through the terminal pore, but become trapped within the plug of fenestrated fibrils within it. The sidewall pores are not permeable to mercury ions in any of the species examined. The styloconic sensilla are not permeable to lead ions in M. configurata or Malacosoma lutescens, the only species tested. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Insect antennal flagella host a multitude of sensory organs fulfilling different functions. Chemoreception, for example, is essential for insects in many contexts. Both olfaction and contact chemoreception are involved in host-plant selection, as well as in the integrity of insect societies, especially for nestmate recognition. Kladothrips intermedius is a eusocial gall-inducing thrips with two castes: dispersers and soldiers. Koptothrips dyskritus is a specialist in invading Kl. intermedius galls, killing the occupants, and thereby gaining the food and shelter offered by galls. In this study, we compared the morphology and ultrastructure of the flagellar sensilla of Kl. intermedius and Ko. dyskritus via scanning and transmission electron microscopy in order to facilitate future investigations of their sensory ecology, with an emphasis on chemical ecology. The two species show a very similar sensillar array. There are a few mechanosensory trichoid and a second type of mechanosensory sensilla, thermo-hygroreceptive sensilla, olfactory single-walled basiconic and double-walled coeloconic sensilla as well as contact chemoreceptive chaetic sensilla. The latter are sexually dimorphic in Kl. intermedius. Dispersers and soldiers of Kl. intermedius do not present noteworthy morphological differences, but the ultrastructural investigations revealed that soldiers have fewer ORNs, possibly an adaptation to their gall-cloistered lifestyle.  相似文献   

6.
Detailed information on sensory organs of Diplopoda especially on antennal sensilla are still sparse and fragmentary. The present study on the antennae of Oranmorpha guerinii (Polydesmida, Paradoxosomatidae) utilizing scanning electron microscopy revealed the presence of six sensillar types: (1) apical cones, (2) sensilla trichodea, (3) sensilla microtrichodea, (4) sensilla chaetica, (5) sensilla basiconica bacilliformia, and (6) sensilla basiconica spiniformia. External structure and distribution of cuticular antennal sensilla are compared with data from other diplopod species. We moreover discuss possible functions of antennal sensilla in millipedes.  相似文献   

7.
The labial and maxillary palps of the bark beetle, Ips typographus, possess a diversified array of sensilla. There are four types of sensilla possessing a single tubular body indicating a mechanoreceptive function. The variation of the associated cuticular structures of these sensillar types ranges from long bristles to cavities within the cuticle. Terminal pore sensilla with a supposed mechanosensory/gustatory function and single-walled presumably chemoreceptive sensilla are found on the apical part of the terminal palp segments. A poreless sensillar type is found on the lateral side of the terminal segment of the maxillary palp. The functional capabilities of this sensillar type are presently unknown.  相似文献   

8.
The ultrastructure and distribution of sensilla on the antennae of the cabbage stem flea beetle, Psylliodes chrysocephala, were investigated using scanning and transmission electron microscopy techniques. Eight different sensillar types were distinguished. These were; hair plate sensilla, sensilla chaetica, three types of sensilla trichodea, sensilla basiconica, grooved peg sensilla and styloconic sensilla. The sensilla chaetica are known to be gustatory receptors. Ultrastructure indicates that the hair plate sensilla and sensilla trichodea type one are probably mechanoreceptors, whilst the sensilla styloconica are probably thermo-hygro receptors. These thermo-hygroreceptors are unusual in that they are innervated by two sensory cells (one hygroreceptor and one thermoreceptor) rather than the more usual triad. The remaining four sensillar types all have a porous hair shaft, indicating an olfactory role. One of these (the grooved peg sensillum) may also have a thermoreceptive function. No sexual dimorphism was found in the structure, number or distribution of the antennal sensilla.  相似文献   

9.
Summary The turnip moth Agrotis segetum possesses seven different types of sensilla: four single-walled (SW), one double-walled (DW), one terminal-pore (TP), and one poreless sensilla (NP).The SW 1 and SW 2 sensilla have the same external appearance, being long and slender, but differ in the branching pattern of the sensory processes: unbranched and branched in SW 1 and SW 2, respectively. The SW 3 sensilla are shorter, sickle-shaped, and contain a large number of branches from the sensory processes. These three sensillar types are innervated by 2–3 sensory cells. The SW 4 sensilla are raisin-shaped and possess three profusely branched sensory processes. The DW sensilla are short and have apical slit-like pores. This sensillar type has 5–6 sensory processes. The TP sensilla possess five sensory processes, one of them terminates basally in a tubular body, the others in the apical part of the long cuticular bristle. The NP sensilla are stout and have apical conelike structures. Two of the sensory processes terminate in the apical part, the third proximally. The third sensory process has a lamellar pattern. The fine structure indicates the following functions: SW and DW sensilla: chemoreception; TP sensillum: chemoreception and mechanoreception; NP sensillum: thermoreception and hygroreception.Supported by joint grants from the Swedish Council for Planning and Coordination of Research, the Swedish Natural Science Research Council, and the Swedish Council for Forestry and Agricultural Research  相似文献   

10.
The main complication sensory organs (the palpal organ and the tarsal sensory complex) of several species of gamasid mites were studied in scanning electron microscope. The species examined included permanent ectoparasites (Laelaps agilis, Laelaptidae), parasites of the nasal cavity and respiratory tract of birds (Sternostoma tracheocolum and Ptilonyssus reguli, Rhinonyssidae), dwellers of the sea littoral zone (Parasitus kempersi, Parasitus immanis, Parasitidae), and mites found on soil and on plants (Amblyseius barkeri, Parasitidae). Similar sensillar types, including olfactory SW-WP sensilla, contact chemo-mechanosensory (SW-UP and DW-UP) sensilla, termo-chemo-mechanosensitive (DW-WP) sensilla of two types, and tactile (NP) sensilla were found in all these species, excluding endoparasites, where some sensillar types (in particular, DW-WP sensilla with slit-like pores) are absent. It was shown that the topography of olfactory SW-WP sensilla of the tarsal complex reflects taxonomic position and phylogenetic history of mite genera, whereas the number of certain sensillar types and the degree of their development reflect ecological specialization of species. The palpal organ is characterized by rather uniform structure in mites of different families, dwellers of different environments, except for the endoparasites of the family Rhinonyssidae, where this organ is strongly reduced.  相似文献   

11.
The internal anatomy of the anterior alimentary canal of the whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B-biotype, was examined by light, scanning, and transmission electron microscopy to elucidate the location and number of precibarial and cibarial gustatory sensilla. Elucidation of the epipharyngeal organ complex within the precibarium revealed 10 precibarial sensilla located proximal to where the paired maxillary stylets diverge on their retraction. The sensory organ complex within the cibarium consists of 8 sensilla, 6 on the epipharyngeal sclerite with 2 found within the hypopharyngeal sclerite. Fine structure investigation revealed the individual neurons to terminate at sensillar pores, which allow direct contact with passing fluids, thus supporting a chemosensory function. Ultrastructure of the neurons is similar to that of precibarial and cibarial gustatory chemosensilla found in other piercing-sucking insects. Their importance to whitefly feeding is discussed.  相似文献   

12.
The lacinia mobilis of the Crustacea Malacostraca is a more or less spine-like movable appendage of the medial mandibular edge, inserted near the base of the incisor process. It occurs in two or possibly three eumalacostracan superorders but is retained in the adult stage only in the Peracarida. The lacinia has been interpreted as the distal member of the spine-row found in many adult Malacostraca and/or their larvae, or alternatively as a derivative of a certain cusp ('cusp b') of the biting edge of the primitive lophogastrids. The distribution, ontogeny and function of the lacinia were studied in a variety of Eumalacostraca. There is great variability in the guiding and locking mechanisms involved in biting, within the subclass and even within single orders. A lacinia-based guiding and locking system is likely to function only in weak mandibles. New evidence is produced in favour of derivation of the lacinia from the spine-row, and the 'cusp b' derivation hypothesis is rejected, 'cusp b' being only a highly specialized lacinia. Doubt is cast upon the unity of the superorder Peracarida mainly because the place of the order Amphipoda within it is regarded as insecure.  相似文献   

13.
In the antenna sensory apparatus of bugs Coreus marginatus, Cimex lectularius, and Rhodnius prolixus sensilla of the four main types are identified: chaetica, trichodea, basiconica, and coeloconica. Chaetoid sensilla are differentiated into two subtypes: sensilla with cogged cuticles and those with smooth ones; trichoid sensilla were divided into long pointed and short ones with blunt tips. In larvae and adults of R. prolixus trichobothria (long filiform hairs) were found on the medial side of pedicellum. The postembryonic changes in the quantitative and qualitative composition of the antenna sensory apparatus were assessed using biometric analysis. The greatest increase of sensory organs was observed upon the nymphal ecdysis from the 5th instar to adult.  相似文献   

14.
ABSTRACT. The structure of galeal sensilla of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), is described using electron microscopical methods. Previous electro-physiological studies indicate that these sensilla respond to amino acids, sucrose and plant saps. One physiological type is particularly sensitive to L-alanine and gamma amino butyric acid (GABA).
Three morphologically different types of sensilla occur on the galeal tip. The more numerous apical pegs are not distinguishable from one another on the basis of external structure, although they differ physiologically. Five sensory cells are associated with most apical pegs. One apical peg, the α-sensillum, contains only four cells. All apical pegs have one cell with a tubular body. The remaining cells have unbranched dendrites and are associated with a single apical pore.
Apical hairs differ from the apical pegs by having double innervation. Within the hair shaft, a dendritic sheath is lacking and the sensillar sinus extends to the base of the hair. The function of this hair type is not known.
Numerous mechanosensory hairs which surround the other sensilla are singly innervated and contain a tubular body at the level of the outer dendritic segments.  相似文献   

15.
One of the primary specializations of true flies (order Diptera) is the modification of the hind wings into club-shaped halteres. Halteres are complex mechanosensory structures that provide sensory feedback essential for stable flight control via an array of campaniform sensilla at the haltere base. The morphology of these sensilla has previously been described in a small number of dipteran species, but little is known about how they vary across fly taxa. Using a synoptic set of specimens representing 42 families from all of the major infraorders of Diptera, we used scanning electron microscopy to map the gross and fine structures of halteres, including sensillum shape and arrangement. We found that several features of haltere morphology correspond with dipteran phylogeny: Schizophora generally have smaller halteres with stereotyped and highly organized sensilla compared to nematoceran flies. We also found a previously undocumented high variation of haltere sensillum shape in nematoceran dipterans, as well as the absence of a dorsal sensillum field in multiple families. Overall, variation in haltere sensillar morphology across the dipteran phylogeny provides insight into the evolution of a highly specialized proprioceptive organ and a basis for future studies on haltere sensory function.  相似文献   

16.
The external morphology and distribution of antennal sensilla of cave-dwelling Australian cockroaches, Paratemnopteryx stonei (Races B and C), P. howarthi and P. sp. nov. (Blattaria : Blattellidae), are described using scanning electron microscopy. Eight major types of sensilla were found. Long and medium-length sensilla chaetica are deeply grooved mechano and contact chemo-receptors with a terminal pore; the long type forms 5–11% and the medium-length 7–22% of all sensilla. Sensilla trichodea type 1 are very slender, non-porous, and form 43–60% of all sensilla. Sensilla trichodea type 2 are stouter, shorter and have wall pores; they form 5–14% of the sensilla. Sensilla basiconica type B are very short, non-porous, inflexible-socket receptors that are known to be hygro- and thermo-receptors; they comprise less than 0.6% of the sensilla. Sensilla basiconica type Gl are short, grooved and have a terminal pore; they form 5–11% of all sensilla. Type G2 are longer with indications of a terminal pore and form 7–10% of the sensilla. Sensilla basiconica type P are short with wall pores, and they form 3–9% of the sensilla. Total sensillar numbers ranged from 5700–8900 for P. stonei, depending on the race and sex, 6950–9950 for P. sp. nov. and 11,700-15,100 for the smaller and possibly more epigean-related P. howarthi. Females had 700–3150 fewer sensilla than males. Comparisons are made between Paratemnopteryx and common epigean cockroaches in relation to sensillar types and numbers.  相似文献   

17.
The head of Austroperipatus aequabilis bears five types of sensilla. which were examined by electron microscopy. They differ from each other in position, shape of outer sensory elements and cuticular socket structures. Thus, we distinguish sensilla with sensory hairs, sensilla with sensory bulbs, cone-shaped sensilla. sensilla with sensory bristles, and sensilla of the lips. They are composed of up to 15 cells, which can he separated into four cell types. The most frequent cell type is the bipolar receptor cell that occurs in all sensilla. The apical surface of this primary receptor cell is characterized by one or two partly branched cilia with a basal 9 × 2 + 0 pattern of microtubules. A modified bipolar receptor cell was found in all sensilla bearing a sensory peg except for the sensilla equipped with sensory bristles. The apical dendrite extends to a long pale process which exclusively contains mitochondria and single microtubules. In all sensilla examined in this study at least one supporting cell occurs which is characterized by parallel microvilli. An additional function of this cell type as a part of the stimulus-conducting system is possible. In the sensillum with a sensory bulb two kinds of supporting cells occur. A unique cell type with an upside down position has regularly been found in all sensilla bearing a sensory peg. Apart from the sensilla they also occur within the labial epidermis. Since most sensilla contain several different receptor cells, they can be considered as complex sense organs. © 1998 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd. All rights reserved  相似文献   

18.
Multiple mechanosensory organs form the subgenual organ complex in orthopteroid insects, located in the proximal tibia. In several Ensifera (Orthoptera), a small chordotonal organ, the so-called accessory organ, is the most posterior part of this sensory complex. In order to document the presence of this accessory organ among the Ensifera, the chordotonal sensilla and their innervation in the posterior tibia of two species of Jerusalem crickets (Stenopelmatidae: Stenopelmatus) is described. The sensory structures were stained by axonal tracing. Scolopidial sensilla occur in the posterior subgenual organ and the accessory organ in all leg pairs. The accessory organ contains 10–17 scolopidial sensilla. Both groups of sensilla are commonly spatially separated. However, in few cases neuronal fibres occurred between both organs. The two sensillum groups are considered as separate organs by the general spatial separation and innervation by different nerve branches. A functional role for mechanoreception is considered: since the accessory organ is located closely under the cuticle, sensilla may be suited to detect vibrations transferred over the leg's surface. This study extends the known taxa with an accessory organ, which occurs in several taxa of Ensifera. Comparative neuroanatomy thus suggests that the accessory organ may be conserved at least in Tettigoniidea.  相似文献   

19.
The pear psyllid, Cacopsylla chinensis (Yang et Li) (Hemiptera: Psyllidae), is one of the most significant economic pests of pear in China, causing direct damage through feeding by the highly specialized piercing–sucking mouthparts. The ultrastructural morphology and sensory apparatus of the mouthparts of the adult were examined using scanning and transmission electron microscopy. The piercing–sucking mouthparts of C. chinensis are composed of a three-segmented labium with a deep groove in the anterior side, a stylet fascicle consisting of two mandibular and two maxillary stylets, and a pyramid-shaped labrum. Proximal to the labium, the stylet fascicle forms a large loop within a membranous crumena. Mandibles, with more than ten teeth on the external convex region, can be seen on the distal extremity. Smooth maxillary stylets are interlocked to form a larger food canal and a smaller salivary canal. One dendritic canal housing 2 dendrites is also found in each mandible. Two types of sensilla trichodea, four types of sensilla basiconica, single as well as groups of sensilla campaniformia, and oval flattened sensilla occur in different locations on the labium, whereas a kind of sensilla basiconica is at the junction of the labrum and anteclypeus. Sensilla trichodea and sensilla campaniformia, always present with denticles, are present on the middle labial segment. Three types of sensilla basiconica, two types of sensilla trichodea and two oval flattened sensilla are located on the distal labial segment. The mouthpart morphology and abundance of sensilla located on the labium in C. chinensis are illustrated, along with a brief discussion of their taxonomic and putative functional significance.  相似文献   

20.
The ability to form lerps is common in Australian Psylloidea. Various species of Glycaspis Taylor (Aphalaridae) form conical lerps on different species of Eucalyptus. Lerps, being a rich sugar source, are preferentially fed by bell miners (Aves: Meliphagidae). In this paper we report the process of lerp construction by a purported new species of Glycaspis living on Eucalyptus sideroxylon. This taxon constructs lerps with anal sugary exudates first building the ribs of the lerps and later filling the space between the polymerized ribs with horizontal tractions of the same sugary substance. Developmental events in this taxon do not follow Dyar's rule strictly. Oviposition induces a non-lethal hypersensitive response in the host leaf. Population trends assessed in 2011–2012 and 2012–2013 showed distinct variations, which have been related to environmental factors. In the 2012–2013 sampling, oviposition occurred preferentially proximally to leaf cracks (possibly induced by intense frost events); we infer that this could be a strategy of this taxon to establish an ‘easier’ access to moisture. Sensillar designs vary between the nymphal instars and adults. The trichoid sensilla and sensillar cavities on the antennae perform mechanosensory and olfactory functions. The mouthpart complex includes a relatively long stylet bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号